These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38666611)

  • 1. Loading Determination of DMTr-substituted Resins for Large-scale Oligonucleotide Synthesis.
    Döring T; Weiland K; Plattner C; Huber T; Bächle D; Samson D
    Curr Protoc; 2024 Apr; 4(4):e1029. PubMed ID: 38666611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substitution determination of Fmoc-substituted resins at different wavelengths.
    Eissler S; Kley M; Bächle D; Loidl G; Meier T; Samson D
    J Pept Sci; 2017 Oct; 23(10):757-762. PubMed ID: 28635051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of 4,4'-dimethoxytrityl-C-phosphonate oligonucleotides.
    Capaldi DC; Gaus HJ; Carty RL; Moore MN; Turney BJ; Decottignies SD; McArdle JV; Scozzari AN; Ravikumar VT; Krotz AH
    Bioorg Med Chem Lett; 2004 Sep; 14(18):4683-90. PubMed ID: 15324888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suzuki-Miyaura Coupling, Heck Alkenylation, and Amidation of DMTr-Protected 5-Iodo-2'-Deoxyuridine via Palladium-catalyzed Reactions.
    Kori S; Khandagale D; Sanghvi YS; Serrano JL; Lozano P; Kapdi AR
    Curr Protoc; 2022 Jul; 2(7):e502. PubMed ID: 35895086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculating Resin Functionalization in Solid-Phase Peptide Synthesis Using a Standardized Method based on Fmoc Determination.
    Al Musaimi O; Basso A; de la Torre BG; Albericio F
    ACS Comb Sci; 2019 Nov; 21(11):717-721. PubMed ID: 31610120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of a Hydrophobic Phenanthrene-Containing Universal Support for Solid-Phase Oligonucleotide Synthesis.
    Fuchi Y; Shiota K; Hari Y
    Curr Protoc; 2024 Mar; 4(3):e1013. PubMed ID: 38483118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attachment of nucleosides and other linkers to solid-phase supports for oligonucleotide synthesis.
    Guzaev AP; Pon RT
    Curr Protoc Nucleic Acid Chem; 2013 Mar; Chapter 3():3.2.1-3.2.23. PubMed ID: 23512695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new 2',3'-cis diol protecting group required for the solid-phase synthesis of capped oligonucleotide derivatives.
    Aoyagi M; Ushioda M; Seio K; Sekine M
    Nucleic Acids Res Suppl; 2003; (3):149-50. PubMed ID: 14510424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TrimerDimer: an oligonucleotide-based saturation mutagenesis approach that removes redundant and stop codons.
    Gaytán P; Contreras-Zambrano C; Ortiz-Alvarado M; Morales-Pablos A; Yáñez J
    Nucleic Acids Res; 2009 Oct; 37(18):e125. PubMed ID: 19783828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linkers, resins, and general procedures for solid-phase peptide synthesis.
    Shelton PT; Jensen KJ
    Methods Mol Biol; 2013; 1047():23-41. PubMed ID: 23943476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immobilized Carbohydrates for Preparation of 3'-Glycoconjugated Oligonucleotides.
    Österlund T; Aho A; Äärelä A; Tähtinen V; Korhonen H; Virta P
    Curr Protoc Nucleic Acid Chem; 2020 Dec; 83(1):e122. PubMed ID: 33290641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient functionalization of oligonucleotides by new achiral nonnucleosidic monomers.
    Kupryushkin MS; Nekrasov MD; Stetsenko DA; Pyshnyi DV
    Org Lett; 2014 Jun; 16(11):2842-5. PubMed ID: 24820262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-phase synthesis of oligonucleotide glycoconjugates bearing three different glycosyl groups: orthogonally protected bis(hydroxymethyl)-N,N'-bis(3-hydroxypropyl)malondiamide phosphoramidite as key building block.
    Katajisto J; Heinonen P; Lönnberg H
    J Org Chem; 2004 Oct; 69(22):7609-15. PubMed ID: 15497988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative evaluation of four trityl-type amidomethyl polystyrene resins in Fmoc solid phase peptide synthesis.
    Zikos C; Livaniou E; Leondiadis L; Ferderigos N; Ithakissios DS; Evangelatos GP
    J Pept Sci; 2003 Jul; 9(7):419-29. PubMed ID: 12916639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of solid supports for combinatorial chemical synthesis.
    Mendonca AJ; Xiao XY
    Med Res Rev; 1999 Sep; 19(5):451-62. PubMed ID: 10502746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bioreductive Protecting Group for RNA Synthesis.
    Saneyoshi H; Nakamura K; Terasawa K; Ono A
    Curr Protoc; 2021 Sep; 1(9):e240. PubMed ID: 34499818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and Purification of N
    Mathivanan J; Du J; Mao S; Zheng YY; Sheng J
    Curr Protoc; 2021 Nov; 1(11):e307. PubMed ID: 34792865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of 2-Amino-4-Fluoropyridine-C-Nucleoside Phosphoramidite for Incorporation into Oligonucleotides.
    Sato K; Matsuda A
    Curr Protoc Nucleic Acid Chem; 2019 Jun; 77(1):e77. PubMed ID: 30747492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of an antisense oligonucleotide targeted against C-raf kinase: efficient oligonucleotide synthesis without chlorinated solvents.
    Krotz AH; Cole DL; Ravikumar VT
    Bioorg Med Chem; 1999 Mar; 7(3):435-9. PubMed ID: 10220029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of Nonnatural Oligonucleotides Made Exclusively of Alkynyl C-Nucleosides with Nonnatural Bases.
    Chiba J; Inouye M
    Curr Protoc Nucleic Acid Chem; 2015 Jun; 61():4.62.1-4.62.22. PubMed ID: 26344228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.