BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38666616)

  • 1. Raman spectroscopy in the study of amyloid formation and phase separation.
    Ramos S; Lee JC
    Biochem Soc Trans; 2024 Jun; 52(3):1121-1130. PubMed ID: 38666616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the structure and formation mechanism of amyloid fibrils by Raman spectroscopy: a review.
    Kurouski D; Van Duyne RP; Lednev IK
    Analyst; 2015 Aug; 140(15):4967-80. PubMed ID: 26042229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibrational Approach to the Dynamics and Structure of Protein Amyloids.
    Li H; Lantz R; Du D
    Molecules; 2019 Jan; 24(1):. PubMed ID: 30621325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale Hyperspectral Imaging of Amyloid Secondary Structures in Liquid.
    Lipiec E; Kaderli J; Kobierski J; Riek R; Skirlińska-Nosek K; Sofińska K; Szymoński M; Zenobi R
    Angew Chem Int Ed Engl; 2021 Feb; 60(9):4545-4550. PubMed ID: 32964527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetically Encoded Aryl Alkyne for Raman Spectral Imaging of Intracellular α-Synuclein Fibrils.
    Watson MD; Lee JC
    J Mol Biol; 2023 Jan; 435(1):167716. PubMed ID: 35792158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Far-Off Resonance: Multiwavelength Raman Spectroscopy Probing Amide Bands of Amyloid-β-(37-42) Peptide.
    Talaikis M; Strazdaitė S; Žiaunys M; Niaura G
    Molecules; 2020 Aug; 25(15):. PubMed ID: 32759766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance Raman spectroscopic measurements delineate the structural changes that occur during tau fibril formation.
    Ramachandran G; Milán-Garcés EA; Udgaonkar JB; Puranik M
    Biochemistry; 2014 Oct; 53(41):6550-65. PubMed ID: 25284680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Watching liquid droplets of TDP-43
    Shuster SO; Lee JC
    J Biol Chem; 2022 Feb; 298(2):101528. PubMed ID: 34953857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-Raman spectroscopic analysis of liquid-liquid phase separation.
    Choi S; Chun SY; Kwak K; Cho M
    Phys Chem Chem Phys; 2023 Mar; 25(13):9051-9060. PubMed ID: 36843414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman spectral imaging of
    Watson MD; Flynn JD; Lee JC
    Biophys Chem; 2021 Feb; 269():106528. PubMed ID: 33418468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale Heterogeneity of the Molecular Structure of Individual hIAPP Amyloid Fibrils Revealed with Tip-Enhanced Raman Spectroscopy.
    vandenAkker CC; Deckert-Gaudig T; Schleeger M; Velikov KP; Deckert V; Bonn M; Koenderink GH
    Small; 2015 Sep; 11(33):4131-9. PubMed ID: 25952953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural features of α-synuclein amyloid fibrils revealed by Raman spectroscopy.
    Flynn JD; McGlinchey RP; Walker RL; Lee JC
    J Biol Chem; 2018 Jan; 293(3):767-776. PubMed ID: 29191831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic engineering combined with deep UV resonance Raman spectroscopy for structural characterization of amyloid-like fibrils.
    Sikirzhytski V; Topilina NI; Higashiya S; Welch JT; Lednev IK
    J Am Chem Soc; 2008 May; 130(18):5852-3. PubMed ID: 18410104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of Tau Condensates by Liquid-Liquid Phase Separation to Study Tau Amyloid Aggregation.
    Lin Y
    Methods Mol Biol; 2024; 2754():185-192. PubMed ID: 38512667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amyloid Structural Changes Studied by Infrared Microspectroscopy in Bigenic Cellular Models of Alzheimer's Disease.
    Paulus A; Engdahl A; Yang Y; Boza-Serrano A; Bachiller S; Torres-Garcia L; Svanbergsson A; Garcia MG; Gouras GK; Li JY; Deierborg T; Klementieva O
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33810433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein denaturation and aggregation: Cellular responses to denatured and aggregated proteins.
    Meredith SC
    Ann N Y Acad Sci; 2005 Dec; 1066():181-221. PubMed ID: 16533927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein misfolding and amyloid nucleation through liquid-liquid phase separation.
    Mukherjee S; Poudyal M; Dave K; Kadu P; Maji SK
    Chem Soc Rev; 2024 May; 53(10):4976-5013. PubMed ID: 38597222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How do membranes initiate Alzheimer's Disease? Formation of toxic amyloid fibrils by the amyloid β-protein on ganglioside clusters.
    Matsuzaki K
    Acc Chem Res; 2014 Aug; 47(8):2397-404. PubMed ID: 25029558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-activity relationship of amyloid fibrils.
    Maji SK; Wang L; Greenwald J; Riek R
    FEBS Lett; 2009 Aug; 583(16):2610-7. PubMed ID: 19596006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.