BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 38666889)

  • 21. Biosensor-Based Multigene Pathway Optimization for Enhancing the Production of Glycolate.
    Xu S; Zhang L; Zhou S; Deng Y
    Appl Environ Microbiol; 2021 May; 87(12):e0011321. PubMed ID: 33837017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. BSGatlas: a unified
    Geissler AS; Anthon C; Alkan F; González-Tortuero E; Poulsen LD; Kallehauge TB; Breüner A; Seemann SE; Vinther J; Gorodkin J
    Microb Genom; 2021 Feb; 7(2):. PubMed ID: 33539279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrated whole-genome and transcriptome sequence analysis reveals the genetic characteristics of a riboflavin-overproducing Bacillus subtilis.
    Wang G; Shi T; Chen T; Wang X; Wang Y; Liu D; Guo J; Fu J; Feng L; Wang Z; Zhao X
    Metab Eng; 2018 Jul; 48():138-149. PubMed ID: 29864583
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biotechnology of riboflavin.
    Schwechheimer SK; Park EY; Revuelta JL; Becker J; Wittmann C
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2107-19. PubMed ID: 26758294
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Cloning the operon genes of riboflavin biosynthesis in Bacillus subtilis on plasmid vector pBR322 in Escherichia coli].
    Panina LI; Iomantas IuV; Khaĭkinson MIa; Rabinovich PM
    Genetika; 1983; 19(1):174-6. PubMed ID: 6299879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An operator-based expression toolkit for
    Fu G; Yue J; Li D; Li Y; Lee SY; Zhang D
    Proc Natl Acad Sci U S A; 2022 Mar; 119(11):e2119980119. PubMed ID: 35263224
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Definition of a second Bacillus subtilis pur regulon comprising the pur and xpt-pbuX operons plus pbuG, nupG (yxjA), and pbuE (ydhL).
    Johansen LE; Nygaard P; Lassen C; Agersø Y; Saxild HH
    J Bacteriol; 2003 Sep; 185(17):5200-9. PubMed ID: 12923093
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dual UTR-A novel 5' untranslated region design for synthetic biology applications.
    Balzer Le S; Onsager I; Lorentzen JA; Lale R
    Synth Biol (Oxf); 2020; 5(1):ysaa006. PubMed ID: 32995550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthetic 3'-UTR valves for optimal metabolic flux control in Escherichia coli.
    Choe D; Kim K; Kang M; Lee SG; Cho S; Palsson B; Cho BK
    Nucleic Acids Res; 2022 Apr; 50(7):4171-4186. PubMed ID: 35357499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving the Production of Riboflavin by Introducing a Mutant Ribulose 5-Phosphate 3-Epimerase Gene in
    Yang B; Sun Y; Fu S; Xia M; Su Y; Liu C; Zhang C; Zhang D
    Front Bioeng Biotechnol; 2021; 9():704650. PubMed ID: 34395408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Obtaining a Panel of Cascade Promoter-5'-UTR Complexes in Escherichia coli.
    Zhou S; Ding R; Chen J; Du G; Li H; Zhou J
    ACS Synth Biol; 2017 Jun; 6(6):1065-1075. PubMed ID: 28252945
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Barriers to simultaneous multilocus integration in Bacillus subtilis tumble down: development of a straightforward screening method for the colorimetric detection of one-step multiple gene insertion using the CRISPR-Cas9 system.
    Ferrando J; Filluelo O; Zeigler DR; Picart P
    Microb Cell Fact; 2023 Jan; 22(1):21. PubMed ID: 36721198
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Programmable CRISPR/Cas9 Toolkit Improves Lycopene Production in Bacillus subtilis.
    Liu Y; Cheng H; Li H; Zhang Y; Wang M
    Appl Environ Microbiol; 2023 Jun; 89(6):e0023023. PubMed ID: 37272803
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integration of enzymatic data in Bacillus subtilis genome-scale metabolic model improves phenotype predictions and enables in silico design of poly-γ-glutamic acid production strains.
    Massaiu I; Pasotti L; Sonnenschein N; Rama E; Cavaletti M; Magni P; Calvio C; Herrgård MJ
    Microb Cell Fact; 2019 Jan; 18(1):3. PubMed ID: 30626384
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Riboflavin operon in Bacillus subtilis contains additional promoters].
    Morozov GI; Rabinovich PM; Emel'ianov VV; Stepanov AI
    Mol Gen Mikrobiol Virusol; 1985 Dec; (12):14-9. PubMed ID: 3939570
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mixomics analysis of Bacillus subtilis: effect of oxygen availability on riboflavin production.
    Hu J; Lei P; Mohsin A; Liu X; Huang M; Li L; Hu J; Hang H; Zhuang Y; Guo M
    Microb Cell Fact; 2017 Sep; 16(1):150. PubMed ID: 28899391
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bottom-up synthetic biology approach for improving the efficiency of menaquinone-7 synthesis in Bacillus subtilis.
    Ding X; Zheng Z; Zhao G; Wang L; Wang H; Yang Q; Zhang M; Li L; Wang P
    Microb Cell Fact; 2022 May; 21(1):101. PubMed ID: 35643569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of riboflavin production in Bacillus subtilis via in vitro and in vivo metabolic engineering of pentose phosphate pathway.
    Zhang M; Zhao X; Chen X; Li M; Wang X
    Biotechnol Lett; 2021 Dec; 43(12):2209-2216. PubMed ID: 34606014
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic engineering of carotenoid biosynthesis in Escherichia coli by ordered gene assembly in Bacillus subtilis.
    Nishizaki T; Tsuge K; Itaya M; Doi N; Yanagawa H
    Appl Environ Microbiol; 2007 Feb; 73(4):1355-61. PubMed ID: 17194842
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis.
    Vahidinasab M; Lilge L; Reinfurt A; Pfannstiel J; Henkel M; Morabbi Heravi K; Hausmann R
    Microb Cell Fact; 2020 Nov; 19(1):205. PubMed ID: 33167976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.