These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38667207)

  • 1. Reinforcement Learning with Task Decomposition and Task-Specific Reward System for Automation of High-Level Tasks.
    Kwon G; Kim B; Kwon NK
    Biomimetics (Basel); 2024 Mar; 9(4):. PubMed ID: 38667207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Task Decomposition and Dedicated Reward-System-Based Reinforcement Learning Algorithm for Pick-and-Place.
    Kim B; Kwon G; Park C; Kwon NK
    Biomimetics (Basel); 2023 Jun; 8(2):. PubMed ID: 37366835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavior fusion for deep reinforcement learning.
    Shi H; Xu M; Hwang KS; Cai BY
    ISA Trans; 2020 Mar; 98():434-444. PubMed ID: 31543262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task.
    Suri RE; Schultz W
    Neuroscience; 1999; 91(3):871-90. PubMed ID: 10391468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinforcement Learning With Task Decomposition for Cooperative Multiagent Systems.
    Sun C; Liu W; Dong L
    IEEE Trans Neural Netw Learn Syst; 2021 May; 32(5):2054-2065. PubMed ID: 32554331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. End-to-End AUV Motion Planning Method Based on Soft Actor-Critic.
    Yu X; Sun Y; Wang X; Zhang G
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Meta attention for Off-Policy Actor-Critic.
    Huang J; Huang W; Lan L; Wu D
    Neural Netw; 2023 Jun; 163():86-96. PubMed ID: 37030278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast reinforcement learning with generalized policy updates.
    Barreto A; Hou S; Borsa D; Silver D; Precup D
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30079-30087. PubMed ID: 32817541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Task Offloading Decision-Making Algorithm for Vehicular Edge Computing: A Deep-Reinforcement-Learning-Based Approach.
    Shi W; Chen L; Zhu X
    Sensors (Basel); 2023 Sep; 23(17):. PubMed ID: 37688051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Reinforcement Learning on Autonomous Driving Policy With Auxiliary Critic Network.
    Wu Y; Liao S; Liu X; Li Z; Lu R
    IEEE Trans Neural Netw Learn Syst; 2023 Jul; 34(7):3680-3690. PubMed ID: 34669579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining backpropagation with Equilibrium Propagation to improve an Actor-Critic reinforcement learning framework.
    Kubo Y; Chalmers E; Luczak A
    Front Comput Neurosci; 2022; 16():980613. PubMed ID: 36082305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive Control for Virtual Synchronous Generator Parameters Based on Soft Actor Critic.
    Lu C; Zhuan X
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing the Sensor Placement for Foot Plantar Center of Pressure without Prior Knowledge Using Deep Reinforcement Learning.
    Lin CW; Ruan SJ; Hsu WC; Tu YW; Han SL
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 33003510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On Automated Object Grasping for Intelligent Prosthetic Hands Using Machine Learning.
    Odeyemi J; Ogbeyemi A; Wong K; Zhang W
    Bioengineering (Basel); 2024 Jan; 11(2):. PubMed ID: 38391594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperative modular reinforcement learning for large discrete action space problem.
    Ming F; Gao F; Liu K; Zhao C
    Neural Netw; 2023 Apr; 161():281-296. PubMed ID: 36774866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. End-to-End Autonomous Navigation Based on Deep Reinforcement Learning with a Survival Penalty Function.
    Jeng SL; Chiang C
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nonlinear hidden layer enables actor-critic agents to learn multiple paired association navigation.
    Kumar MG; Tan C; Libedinsky C; Yen SC; Tan AYY
    Cereb Cortex; 2022 Sep; 32(18):3917-3936. PubMed ID: 35034127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reinforcement learning using a continuous time actor-critic framework with spiking neurons.
    Frémaux N; Sprekeler H; Gerstner W
    PLoS Comput Biol; 2013 Apr; 9(4):e1003024. PubMed ID: 23592970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Path-Planning Method Based on Improved Soft Actor-Critic Algorithm for Mobile Robots.
    Zhao T; Wang M; Zhao Q; Zheng X; Gao H
    Biomimetics (Basel); 2023 Oct; 8(6):. PubMed ID: 37887612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Reinforcement Learning-Based Accurate Control of Planetary Soft Landing.
    Xu X; Chen Y; Bai C
    Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.