These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 38667239)

  • 1. Bioinspired and Photo-Clickable Thiol-Ene Bioinks for the Extrusion Bioprinting of Mechanically Tunable 3D Skin Models.
    Bebiano LB; Presa R; Vieira F; Lourenço BN; Pereira RF
    Biomimetics (Basel); 2024 Apr; 9(4):. PubMed ID: 38667239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioprinting a Multifunctional Bioink to Engineer Clickable 3D Cellular Niches with Tunable Matrix Microenvironmental Cues.
    Pereira RF; Lourenço BN; Bártolo PJ; Granja PL
    Adv Healthc Mater; 2021 Jan; 10(2):e2001176. PubMed ID: 33135399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs.
    Skardal A; Devarasetty M; Kang HW; Mead I; Bishop C; Shupe T; Lee SJ; Jackson J; Yoo J; Soker S; Atala A
    Acta Biomater; 2015 Oct; 25():24-34. PubMed ID: 26210285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiol-Ene Alginate Hydrogels as Versatile Bioinks for Bioprinting.
    Ooi HW; Mota C; Ten Cate AT; Calore A; Moroni L; Baker MB
    Biomacromolecules; 2018 Aug; 19(8):3390-3400. PubMed ID: 29939754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix.
    Shin YJ; Shafranek RT; Tsui JH; Walcott J; Nelson A; Kim DH
    Acta Biomater; 2021 Jan; 119():75-88. PubMed ID: 33166713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy.
    Yin J; Yan M; Wang Y; Fu J; Suo H
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D bioprinting of molecularly engineered PEG-based hydrogels utilizing gelatin fragments.
    Piluso S; Skvortsov GA; Altunbek M; Afghah F; Khani N; Koç B; Patterson J
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34192670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioprinting 101: Design, Fabrication, and Evaluation of Cell-Laden 3D Bioprinted Scaffolds.
    Deo KA; Singh KA; Peak CW; Alge DL; Gaharwar AK
    Tissue Eng Part A; 2020 Mar; 26(5-6):318-338. PubMed ID: 32079490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Bioprinting Using Universal Fugitive Network Bioinks.
    Arslan H; Davuluri A; Nguyen HH; So BR; Lee J; Jeon J; Yum K
    ACS Appl Bio Mater; 2024 Oct; 7(10):7040-7050. PubMed ID: 39291381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide-dendrimer-reinforced bioinks for 3D bioprinting of heterogeneous and biomimetic in vitro models.
    Zhou K; Ding R; Tao X; Cui Y; Yang J; Mao H; Gu Z
    Acta Biomater; 2023 Oct; 169():243-255. PubMed ID: 37572980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiol-Ene Clickable Gelatin: A Platform Bioink for Multiple 3D Biofabrication Technologies.
    Bertlein S; Brown G; Lim KS; Jungst T; Boeck T; Blunk T; Tessmar J; Hooper GJ; Woodfield TBF; Groll J
    Adv Mater; 2017 Nov; 29(44):. PubMed ID: 29044686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of agarose-gelatin bioinks for extrusion-based bioprinting and cell encapsulation.
    Dravid A; McCaughey-Chapman A; Raos B; O'Carroll SJ; Connor B; Svirskis D
    Biomed Mater; 2022 Jun; 17(5):. PubMed ID: 35654031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogel Bioink Reinforcement for Additive Manufacturing: A Focused Review of Emerging Strategies.
    Chimene D; Kaunas R; Gaharwar AK
    Adv Mater; 2020 Jan; 32(1):e1902026. PubMed ID: 31599073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double network laminarin-boronic/alginate dynamic bioink for 3D bioprinting cell-laden constructs.
    Amaral AJR; Gaspar VM; Lavrador P; Mano JF
    Biofabrication; 2021 May; 13(3):. PubMed ID: 34075894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts.
    Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK
    Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Candidate Bioinks for Extrusion 3D Bioprinting-A Systematic Review of the Literature.
    Tarassoli SP; Jessop ZM; Jovic T; Hawkins K; Whitaker IS
    Front Bioeng Biotechnol; 2021; 9():616753. PubMed ID: 34722473
    [No Abstract]   [Full Text] [Related]  

  • 17. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks.
    Cui X; Li J; Hartanto Y; Durham M; Tang J; Zhang H; Hooper G; Lim K; Woodfield T
    Adv Healthc Mater; 2020 Aug; 9(15):e1901648. PubMed ID: 32352649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-Laden Nanocellulose/Chitosan-Based Bioinks for 3D Bioprinting and Enhanced Osteogenic Cell Differentiation.
    Maturavongsadit P; Narayanan LK; Chansoria P; Shirwaiker R; Benhabbour SR
    ACS Appl Bio Mater; 2021 Mar; 4(3):2342-2353. PubMed ID: 35014355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances.
    Chakraborty A; Roy A; Ravi SP; Paul A
    Biomater Sci; 2021 Sep; 9(19):6337-6354. PubMed ID: 34397056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.