These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Process- and bio-inspired hydrogels for 3D bioprinting of soft free-standing neural and glial tissues. Haring AP; Thompson EG; Tong Y; Laheri S; Cesewski E; Sontheimer H; Johnson BN Biofabrication; 2019 Feb; 11(2):025009. PubMed ID: 30695770 [TBL] [Abstract][Full Text] [Related]
24. Nanocomposite Bioinks Based on Agarose and 2D Nanosilicates with Tunable Flow Properties and Bioactivity for 3D Bioprinting. Nadernezhad A; Caliskan OS; Topuz F; Afghah F; Erman B; Koc B ACS Appl Bio Mater; 2019 Feb; 2(2):796-806. PubMed ID: 35016284 [TBL] [Abstract][Full Text] [Related]
25. High-Fidelity Extrusion Bioprinting of Low-Printability Polymers Using Carbopol as a Rheology Modifier. Barreiro Carpio M; Gonzalez Martinez E; Dabaghi M; Ungureanu J; Arizpe Tafoya AV; Gonzalez Martinez DA; Hirota JA; Moran-Mirabal JM ACS Appl Mater Interfaces; 2023 Nov; 15(47):54234-54248. PubMed ID: 37964517 [TBL] [Abstract][Full Text] [Related]
26. Optimization of methacrylated gelatin /layered double hydroxides nanocomposite cell-laden hydrogel bioinks with high printability for 3D extrusion bioprinting. Alarçin E; İzbudak B; Yüce Erarslan E; Domingo S; Tutar R; Titi K; Kocaaga B; Guner FS; Bal-Öztürk A J Biomed Mater Res A; 2023 Feb; 111(2):209-223. PubMed ID: 36213938 [TBL] [Abstract][Full Text] [Related]
27. Three-dimensional bioprinting of a full-thickness functional skin model using acellular dermal matrix and gelatin methacrylamide bioink. Jin R; Cui Y; Chen H; Zhang Z; Weng T; Xia S; Yu M; Zhang W; Shao J; Yang M; Han C; Wang X Acta Biomater; 2021 Sep; 131():248-261. PubMed ID: 34265473 [TBL] [Abstract][Full Text] [Related]
28. Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. de Melo BAG; Jodat YA; Cruz EM; Benincasa JC; Shin SR; Porcionatto MA Acta Biomater; 2020 Nov; 117():60-76. PubMed ID: 32949823 [TBL] [Abstract][Full Text] [Related]
29. Microfluidic 3D Printing of a Photo-Cross-Linkable Bioink Using Insights from Computational Modeling. Mirani B; Stefanek E; Godau B; Hossein Dabiri SM; Akbari M ACS Biomater Sci Eng; 2021 Jul; 7(7):3269-3280. PubMed ID: 34142796 [TBL] [Abstract][Full Text] [Related]
31. Clickable PEG hydrogel microspheres as building blocks for 3D bioprinting. Xin S; Chimene D; Garza JE; Gaharwar AK; Alge DL Biomater Sci; 2019 Feb; 7(3):1179-1187. PubMed ID: 30656307 [TBL] [Abstract][Full Text] [Related]
32. Gallol-derived ECM-mimetic adhesive bioinks exhibiting temporal shear-thinning and stabilization behavior. Shin M; Galarraga JH; Kwon MY; Lee H; Burdick JA Acta Biomater; 2019 Sep; 95():165-175. PubMed ID: 30366132 [TBL] [Abstract][Full Text] [Related]
33. Designing Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting. Abaci A; Guvendiren M Adv Healthc Mater; 2020 Dec; 9(24):e2000734. PubMed ID: 32691980 [TBL] [Abstract][Full Text] [Related]
34. Stem cell-laden hydrogel bioink for generation of high resolution and fidelity engineered tissues with complex geometries. Jeon O; Lee YB; Lee SJ; Guliyeva N; Lee J; Alsberg E Bioact Mater; 2022 Sep; 15():185-193. PubMed ID: 35386348 [TBL] [Abstract][Full Text] [Related]
35. Direct 3D Bioprinting of Tough and Antifatigue Cell-Laden Constructs Enabled by a Self-Healing Hydrogel Bioink. Liu Q; Yang J; Wang Y; Wu T; Liang Y; Deng K; Luan G; Chen Y; Huang Z; Yue K Biomacromolecules; 2023 Jun; 24(6):2549-2562. PubMed ID: 37115848 [TBL] [Abstract][Full Text] [Related]
36. Advantages of photo-curable collagen-based cell-laden bioinks compared to methacrylated gelatin (GelMA) in digital light processing (DLP) and extrusion bioprinting. Shi H; Li Y; Xu K; Yin J Mater Today Bio; 2023 Dec; 23():100799. PubMed ID: 37766893 [TBL] [Abstract][Full Text] [Related]
37. Recent advances in bioprinting using silk protein-based bioinks. Chakraborty J; Mu X; Pramanick A; Kaplan DL; Ghosh S Biomaterials; 2022 Aug; 287():121672. PubMed ID: 35835001 [TBL] [Abstract][Full Text] [Related]
38. Development of Bioink from Decellularized Tendon Extracellular Matrix for 3D Bioprinting. Toprakhisar B; Nadernezhad A; Bakirci E; Khani N; Skvortsov GA; Koc B Macromol Biosci; 2018 Oct; 18(10):e1800024. PubMed ID: 30019414 [TBL] [Abstract][Full Text] [Related]
39. Shear-Thinning and Thermo-Reversible Nanoengineered Inks for 3D Bioprinting. Wilson SA; Cross LM; Peak CW; Gaharwar AK ACS Appl Mater Interfaces; 2017 Dec; 9(50):43449-43458. PubMed ID: 29214803 [TBL] [Abstract][Full Text] [Related]
40. Tuning thermoresponsive properties of carboxymethyl cellulose (CMC)-agarose composite bioinks to fabricate complex 3D constructs for regenerative medicine. Budharaju H; Chandrababu H; Zennifer A; Chellappan D; Sethuraman S; Sundaramurthi D Int J Biol Macromol; 2024 Mar; 260(Pt 1):129443. PubMed ID: 38228200 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]