These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38667252)

  • 1. Diatom-Inspired Structural Adaptation According to Mode Shapes: A Study on 3D Structures and Software Tools.
    Andresen S; Ahmad Basri AB
    Biomimetics (Basel); 2024 Apr; 9(4):. PubMed ID: 38667252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural Frequencies of Diatom Shells: Alteration of Eigenfrequencies Using Structural Patterns Inspired by Diatoms.
    Andresen S; Linnemann SK; Ahmad Basri AB; Savysko O; Hamm C
    Biomimetics (Basel); 2024 Jan; 9(2):. PubMed ID: 38392131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of hierarchical design and morphology in the mechanical response of diatom-inspired structures via simulation.
    Gutiérrez A; Guney MG; Fedder GK; Dávila LP
    Biomater Sci; 2017 Dec; 6(1):146-153. PubMed ID: 29147717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrated approach for probing the structure and mechanical properties of diatoms: Toward engineered nanotemplates.
    Moreno MD; Ma K; Schoenung J; Dávila LP
    Acta Biomater; 2015 Oct; 25():313-24. PubMed ID: 26196080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress-Adaptive Stiffening Structures Inspired by Diatoms: A Parametric Solution for Lightweight Surfaces.
    Linnemann SK; Friedrichs L; Niebuhr NM
    Biomimetics (Basel); 2024 Jan; 9(1):. PubMed ID: 38248620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolution of advanced mechanical defenses and potential technological applications of diatom shells.
    Hamm CE
    J Nanosci Nanotechnol; 2005 Jan; 5(1):108-19. PubMed ID: 15762169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diatom-inspired stiffness optimization for plates and cellular solids.
    Breish F; Hamm C; Kienzler R
    Bioinspir Biomim; 2023 Mar; 18(3):. PubMed ID: 36898158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometry and topology of diatom shape and surface morphogenesis for use in applications of nanotechnology.
    Pappas JL
    J Nanosci Nanotechnol; 2005 Jan; 5(1):120-30. PubMed ID: 15762170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical and Experimental Study of the Mechanical Response of Diatom Frustules.
    Topal E; Rajendran H; Zgłobicka I; Gluch J; Liao Z; Clausner A; Kurzydłowski KJ; Zschech E
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32443489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diatom Biogenic Silica as a Felicitous Platform for Biochemical Engineering: Expanding Frontiers.
    Panwar V; Dutta T
    ACS Appl Bio Mater; 2019 Jun; 2(6):2295-2316. PubMed ID: 35030724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method for exact three-dimensional reconstructions of diatom frustules.
    Friedrichs L; Maier M; Hamm C
    J Microsc; 2012 Nov; 248(2):208-17. PubMed ID: 23078119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic Diatom Biosilica and Its Potential for Biomedical Applications and Prospects: A Review.
    Min KH; Kim DH; Youn S; Pack SP
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38396701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultraviolet and visible random lasers assisted by diatom frustules.
    Chen YC; Wang CS; Chang TY; Lin TY; Lin HM; Chen YF
    Opt Express; 2015 Jun; 23(12):16224-31. PubMed ID: 26193594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of biosilica structures from frustules of diatoms and their applications: current state and perspectives.
    Wang Y; Cai J; Jiang Y; Jiang X; Zhang D
    Appl Microbiol Biotechnol; 2013 Jan; 97(2):453-60. PubMed ID: 23179621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibration of Mechanically-Assembled 3D Microstructures Formed by Compressive Buckling.
    Wang H; Ning X; Li H; Luan H; Xue Y; Yu X; Fan Z; Li L; Rogers JA; Zhang Y; Huang Y
    J Mech Phys Solids; 2018 Mar; 112():187-208. PubMed ID: 29713095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prevalence of diatom frustules in non-vegetarian foodstuffs and its implications in interpreting identification of diatom frustules in drowning cases.
    Yen LY; Jayaprakash PT
    Forensic Sci Int; 2007 Jul; 170(1):1-7. PubMed ID: 17023133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diatom-inspired multiscale mineralization of patterned protein-polysaccharide complex structures.
    Li K; Li Y; Wang X; Cui M; An B; Pu J; Liu J; Zhang B; Ma G; Zhong C
    Natl Sci Rev; 2021 Aug; 8(8):nwaa191. PubMed ID: 34691703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SHERPA: an image segmentation and outline feature extraction tool for diatoms and other objects.
    Kloster M; Kauer G; Beszteri B
    BMC Bioinformatics; 2014 Jun; 15():218. PubMed ID: 24964954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical Analysis of the Light Modulation by the Frustule of
    Ghobara M; Oschatz C; Fratzl P; Reissig L
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrically assisted 3D printing of nacre-inspired structures with self-sensing capability.
    Yang Y; Li X; Chu M; Sun H; Jin J; Yu K; Wang Q; Zhou Q; Chen Y
    Sci Adv; 2019 Apr; 5(4):eaau9490. PubMed ID: 30972361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.