BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 38667322)

  • 1. Lineage Reprogramming: Genetic, Chemical, and Physical Cues for Cell Fate Conversion with a Focus on Neuronal Direct Reprogramming and Pluripotency Reprogramming.
    Umeyama T; Matsuda T; Nakashima K
    Cells; 2024 Apr; 13(8):. PubMed ID: 38667322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering cell fate: Spotlight on cell-activation and signaling-directed lineage conversion.
    Ebrahimi B
    Tissue Cell; 2016 Oct; 48(5):475-87. PubMed ID: 27514850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetics of cellular reprogramming.
    Krishnakumar R; Blelloch RH
    Curr Opin Genet Dev; 2013 Oct; 23(5):548-55. PubMed ID: 23948105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNAs Induce a Permissive Chromatin Environment that Enables Neuronal Subtype-Specific Reprogramming of Adult Human Fibroblasts.
    Abernathy DG; Kim WK; McCoy MJ; Lake AM; Ouwenga R; Lee SW; Xing X; Li D; Lee HJ; Heuckeroth RO; Dougherty JD; Wang T; Yoo AS
    Cell Stem Cell; 2017 Sep; 21(3):332-348.e9. PubMed ID: 28886366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lineage conversion methodologies meet the reprogramming toolbox.
    Sancho-Martinez I; Baek SH; Izpisua Belmonte JC
    Nat Cell Biol; 2012 Sep; 14(9):892-9. PubMed ID: 22945254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic Control of Cell Potency and Fate Determination during Mammalian Gastrulation.
    Sullivan AE
    Genes (Basel); 2023 May; 14(6):. PubMed ID: 37372324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies.
    Ladewig J; Koch P; Brüstle O
    Nat Rev Mol Cell Biol; 2013 Apr; 14(4):225-36. PubMed ID: 23486282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic regulation of neural lineage elaboration: Implications for therapeutic reprogramming.
    Stricker SH; Götz M
    Neurobiol Dis; 2021 Jan; 148():105174. PubMed ID: 33171228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Insight into Reprogramming Barriers to iPSC Generation.
    Haridhasapavalan KK; Raina K; Dey C; Adhikari P; Thummer RP
    Stem Cell Rev Rep; 2020 Feb; 16(1):56-81. PubMed ID: 31758374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetics of induced pluripotency, the seven-headed dragon.
    Djuric U; Ellis J
    Stem Cell Res Ther; 2010 Mar; 1(1):3. PubMed ID: 20504284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates.
    Mall M; Kareta MS; Chanda S; Ahlenius H; Perotti N; Zhou B; Grieder SD; Ge X; Drake S; Euong Ang C; Walker BM; Vierbuchen T; Fuentes DR; Brennecke P; Nitta KR; Jolma A; Steinmetz LM; Taipale J; Südhof TC; Wernig M
    Nature; 2017 Apr; 544(7649):245-249. PubMed ID: 28379941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct cell reprogramming: approaches, mechanisms and progress.
    Wang H; Yang Y; Liu J; Qian L
    Nat Rev Mol Cell Biol; 2021 Jun; 22(6):410-424. PubMed ID: 33619373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell Reprogramming: The Many Roads to Success.
    Aydin B; Mazzoni EO
    Annu Rev Cell Dev Biol; 2019 Oct; 35():433-452. PubMed ID: 31340126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combinatorial control of cell fate and reprogramming in the mammalian germline.
    Magnúsdóttir E; Gillich A; Grabole N; Surani MA
    Curr Opin Genet Dev; 2012 Oct; 22(5):466-74. PubMed ID: 22795169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fusion of Reprogramming Factors Alters the Trajectory of Somatic Lineage Conversion.
    Velychko S; Kang K; Kim SM; Kwak TH; Kim KP; Park C; Hong K; Chung C; Hyun JK; MacCarthy CM; Wu G; Schöler HR; Han DW
    Cell Rep; 2019 Apr; 27(1):30-39.e4. PubMed ID: 30943410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deterministic Somatic Cell Reprogramming Involves Continuous Transcriptional Changes Governed by Myc and Epigenetic-Driven Modules.
    Zviran A; Mor N; Rais Y; Gingold H; Peles S; Chomsky E; Viukov S; Buenrostro JD; Scognamiglio R; Weinberger L; Manor YS; Krupalnik V; Zerbib M; Hezroni H; Jaitin DA; Larastiaso D; Gilad S; Benjamin S; Gafni O; Mousa A; Ayyash M; Sheban D; Bayerl J; Aguilera-Castrejon A; Massarwa R; Maza I; Hanna S; Stelzer Y; Ulitsky I; Greenleaf WJ; Tanay A; Trumpp A; Amit I; Pilpel Y; Novershtern N; Hanna JH
    Cell Stem Cell; 2019 Feb; 24(2):328-341.e9. PubMed ID: 30554962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induced neuronal reprogramming.
    Ang CE; Wernig M
    J Comp Neurol; 2014 Aug; 522(12):2877-86. PubMed ID: 24771471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Conversion Through Trans-Differentiation: Efficacy and Safety.
    Prasad A; Teh DB; Shah Jahan FR; Manivannan J; Chua SM; All AH
    Stem Cells Dev; 2017 Feb; 26(3):154-165. PubMed ID: 27796171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional Profiling During Neural Conversion.
    Afeworki Y; Wollenzien H; Kareta MS
    Methods Mol Biol; 2021; 2352():171-181. PubMed ID: 34324187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct cell-fate conversion of somatic cells: Toward regenerative medicine and industries.
    Horisawa K; Suzuki A
    Proc Jpn Acad Ser B Phys Biol Sci; 2020; 96(4):131-158. PubMed ID: 32281550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.