BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38667401)

  • 1. Molecular Identification and Prevalence of the Mite
    Nguyen TT; Yoo MS; Lee HS; Youn SY; Lee SJ; Seo SK; Kim J; Cho YS
    Insects; 2024 Apr; 15(4):. PubMed ID: 38667401
    [No Abstract]   [Full Text] [Related]  

  • 2. Identification and pathogen detection of a Neocypholaelaps species (Acari: Mesostigmata: Ameroseiidae) from beehives in the Republic of Korea.
    Nguyen TT; Yoo MS; Lee JH; Truong AT; Youn SY; Lee SJ; Yoon SS; Cho YS
    PLoS One; 2024; 19(4):e0300025. PubMed ID: 38603704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First identification of Tyrophagus curvipenis (Acari: Acaridae) and pathogen detection in Apis mellifera colonies in the Republic of Korea.
    Nguyen TT; Yoo MS; Truong AT; Lee JH; Youn SY; Lee SJ; Kim DH; Yoon SS; Cho YS
    Sci Rep; 2023 Jun; 13(1):9469. PubMed ID: 37301922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prevalence and genome features of lake sinai virus isolated from Apis mellifera in the Republic of Korea.
    Nguyen TT; Yoo MS; Truong AT; Youn SY; Kim DH; Lee SJ; Yoon SS; Cho YS
    PLoS One; 2024; 19(3):e0299558. PubMed ID: 38502683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carpoglyphus lactis (Carpoglyphidae) infestation in the stored medicinal Fructus Jujubae.
    Zhan XD; Li CP; Chen Q
    Nutr Hosp; 2017 Feb; 34(1):171-174. PubMed ID: 28244788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Prevalence of Acarapis Mite Infestations in Honey Bees in Korea.
    Ahn AJ; Ahn KS; Noh JH; Kim YH; Yoo MS; Kang SW; Yu DH; Shin SS
    Korean J Parasitol; 2015 Jun; 53(3):315-20. PubMed ID: 26174825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distance Between Honey Bee
    Nolan MP; Delaplane KS
    Apidologie; 2016; 2016(1):1-9. PubMed ID: 27812228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systemic spread and propagation of a plant-pathogenic virus in European honeybees, Apis mellifera.
    Li JL; Cornman RS; Evans JD; Pettis JS; Zhao Y; Murphy C; Peng WJ; Wu J; Hamilton M; Boncristiani HF; Zhou L; Hammond J; Chen YP
    mBio; 2014 Jan; 5(1):e00898-13. PubMed ID: 24449751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prevalence of
    Keshlaf MM; Mirwan HB; Ghana S; Mubrok S; Shaibi T
    Open Vet J; 2023 Jul; 13(7):834-838. PubMed ID: 37614726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor mite populations in France.
    Tentcheva D; Gauthier L; Zappulla N; Dainat B; Cousserans F; Colin ME; Bergoin M
    Appl Environ Microbiol; 2004 Dec; 70(12):7185-91. PubMed ID: 15574916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geraniol dehydrogenase, the key enzyme in biosynthesis of the alarm pheromone, from the astigmatid mite Carpoglyphus lactis (Acari: Carpoglyphidae).
    Noge K; Kato M; Mori N; Kataoka M; Tanaka C; Yamasue Y; Nishida R; Kuwahara Y
    FEBS J; 2008 Jun; 275(11):2807-17. PubMed ID: 18422649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo biosynthesis of linoleic acid and its conversion to the hydrocarbon (Z,Z)-6,9-heptadecadiene in the astigmatid mite, Carpoglyphus lactis: incorporation experiments with 13C-labeled glucose.
    Shimizu N; Naito M; Mori N; Kuwahara Y
    Insect Biochem Mol Biol; 2014 Feb; 45():51-7. PubMed ID: 24333472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Investigation of infestation of
    Ya-Nan Z; Xiao-Dong Z; Chao-Pin L
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2018 Aug; 30(5):586-587. PubMed ID: 30567040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular identification and phylogenetic analysis of
    Sharifpour MF; Mardani K; Ownagh A
    Vet Res Forum; 2016; 7(4):287-294. PubMed ID: 28144419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors influencing the prevalence and infestation levels of Varroa destructor in honeybee colonies in two highland agro-ecological zones of Uganda.
    Chemurot M; Akol AM; Masembe C; de Smet L; Descamps T; de Graaf DC
    Exp Appl Acarol; 2016 Apr; 68(4):497-508. PubMed ID: 26801158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The prevalence and molecular characterization of Acarapis woodi and Varroa destructor mites in honeybees in the Tohoku region of Japan.
    Takashima S; Ohari Y; Itagaki T
    Parasitol Int; 2020 Apr; 75():102052. PubMed ID: 31927138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical and cultural control of Tropilaelaps mercedesae mites in honeybee (Apis mellifera) colonies in Northern Thailand.
    Pettis JS; Rose R; Chaimanee V
    PLoS One; 2017; 12(11):e0188063. PubMed ID: 29125881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [
    Yong H; Qiang C; Xiao-Dong Z; Chao-Pin L
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2017 Jul; 29(6):773-775. PubMed ID: 29469463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prevalence of the microsporidian
    Papini R; Mancianti F; Canovai R; Cosci F; Rocchigiani G; Benelli G; Canale A
    Saudi J Biol Sci; 2017 Jul; 24(5):979-982. PubMed ID: 28663691
    [No Abstract]   [Full Text] [Related]  

  • 20. Comparison of Varroa destructor and Worker Honeybee Microbiota Within Hives Indicates Shared Bacteria.
    Hubert J; Kamler M; Nesvorna M; Ledvinka O; Kopecky J; Erban T
    Microb Ecol; 2016 Aug; 72(2):448-59. PubMed ID: 27129319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.