These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 38667657)

  • 21. Harnessing light in biofabrication.
    Levato R; Lim KS
    Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36723633
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advanced Strategies for 3D Bioprinting of Tissue and Organ Analogs Using Alginate Hydrogel Bioinks.
    Gao Q; Kim BS; Gao G
    Mar Drugs; 2021 Dec; 19(12):. PubMed ID: 34940707
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioprinting for vascular and vascularized tissue biofabrication.
    Datta P; Ayan B; Ozbolat IT
    Acta Biomater; 2017 Mar; 51():1-20. PubMed ID: 28087487
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Biofabrication: new approaches for tissue regeneration].
    Horch RE; Weigand A; Wajant H; Groll J; Boccaccini AR; Arkudas A
    Handchir Mikrochir Plast Chir; 2018 Apr; 50(2):93-100. PubMed ID: 29378379
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D Bioprinting of Cell-Laden Hydrogels for Improved Biological Functionality.
    Hull SM; Brunel LG; Heilshorn SC
    Adv Mater; 2022 Jan; 34(2):e2103691. PubMed ID: 34672027
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trends in Double Networks as Bioprintable and Injectable Hydrogel Scaffolds for Tissue Regeneration.
    Aldana AA; Houben S; Moroni L; Baker MB; Pitet LM
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4077-4101. PubMed ID: 33606938
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unveiling the potential of melt electrowriting in regenerative dental medicine.
    Daghrery A; de Souza Araújo IJ; Castilho M; Malda J; Bottino MC
    Acta Biomater; 2023 Jan; 156():88-109. PubMed ID: 35026478
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D Bioprinting of Complex, Cell-laden Alginate Constructs.
    Tabriz AG; Cornelissen DJ; Shu W
    Methods Mol Biol; 2021; 2147():143-148. PubMed ID: 32840817
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell-laden hydrogels for osteochondral and cartilage tissue engineering.
    Yang J; Zhang YS; Yue K; Khademhosseini A
    Acta Biomater; 2017 Jul; 57():1-25. PubMed ID: 28088667
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 25th anniversary article: Engineering hydrogels for biofabrication.
    Malda J; Visser J; Melchels FP; Jüngst T; Hennink WE; Dhert WJ; Groll J; Hutmacher DW
    Adv Mater; 2013 Sep; 25(36):5011-28. PubMed ID: 24038336
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Next Evolution in Organ-Scale Biofabrication: Bioresin Design for Rapid High-Resolution Vat Polymerization.
    Murphy CA; Lim KS; Woodfield TBF
    Adv Mater; 2022 May; 34(20):e2107759. PubMed ID: 35128736
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs.
    Skardal A; Devarasetty M; Kang HW; Mead I; Bishop C; Shupe T; Lee SJ; Jackson J; Yoo J; Soker S; Atala A
    Acta Biomater; 2015 Oct; 25():24-34. PubMed ID: 26210285
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emerging Biofabrication Strategies for Engineering Complex Tissue Constructs.
    Pedde RD; Mirani B; Navaei A; Styan T; Wong S; Mehrali M; Thakur A; Mohtaram NK; Bayati A; Dolatshahi-Pirouz A; Nikkhah M; Willerth SM; Akbari M
    Adv Mater; 2017 May; 29(19):. PubMed ID: 28370405
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generating adipose stem cell-laden hyaluronic acid-based scaffolds using 3D bioprinting via the double crosslinked strategy for chondrogenesis.
    Nedunchezian S; Banerjee P; Lee CY; Lee SS; Lin CW; Wu CW; Wu SC; Chang JK; Wang CK
    Mater Sci Eng C Mater Biol Appl; 2021 May; 124():112072. PubMed ID: 33947564
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advances in Regenerative Medicine and Biomaterials.
    Şeker Ş; Elçin AE; Elçin YM
    Methods Mol Biol; 2023; 2575():127-152. PubMed ID: 36301474
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stem cell bioprinting for applications in regenerative medicine.
    Tricomi BJ; Dias AD; Corr DT
    Ann N Y Acad Sci; 2016 Nov; 1383(1):115-124. PubMed ID: 27870077
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hybrid biofabrication of 3D osteoconductive constructs comprising Mg-based nanocomposites and cell-laden bioinks for bone repair.
    Alcala-Orozco CR; Mutreja I; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Bone; 2022 Jan; 154():116198. PubMed ID: 34534709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Importance of Interfaces in Multi-Material Biofabricated Tissue Structures.
    Viola M; Piluso S; Groll J; Vermonden T; Malda J; Castilho M
    Adv Healthc Mater; 2021 Nov; 10(21):e2101021. PubMed ID: 34510824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel bioprinting method and system for forming hybrid tissue engineering constructs.
    Shanjani Y; Pan CC; Elomaa L; Yang Y
    Biofabrication; 2015 Dec; 7(4):045008. PubMed ID: 26685102
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-Dimensional Printing Strategies for Enhanced Hydrogel Applications.
    Omidian H; Mfoafo K
    Gels; 2024 Mar; 10(4):. PubMed ID: 38667639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.