BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 38667802)

  • 1.
    Græsholt C; Brembu T; Volpe C; Bartosova Z; Serif M; Winge P; Nymark M
    Mar Drugs; 2024 Apr; 22(4):. PubMed ID: 38667802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of genes coding for functional zeaxanthin epoxidases in the diatom Phaeodactylum tricornutum.
    Eilers U; Dietzel L; Breitenbach J; Büchel C; Sandmann G
    J Plant Physiol; 2016 Mar; 192():64-70. PubMed ID: 26851888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of three diadinoxanthin de-epoxidase genes of Phaeodacylum tricornutum in Escherichia coli Origami b and BL21 strain.
    Bojko M; Olchawa-Pajor M; Tuleja U; Kuczyńska P; Strzałka W; Latowski D; Strzałka K
    Acta Biochim Pol; 2013; 60(4):857-60. PubMed ID: 24432346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and purification of all-
    Kuczynska P; Jemiola-Rzeminska M
    J Appl Phycol; 2017; 29(1):79-87. PubMed ID: 28344388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The xanthophyll cycle in diatom Phaeodactylum tricornutum in response to light stress.
    Kuczynska P; Jemiola-Rzeminska M; Nowicka B; Jakubowska A; Strzalka W; Burda K; Strzalka K
    Plant Physiol Biochem; 2020 May; 152():125-137. PubMed ID: 32416342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The light-harvesting antenna of the diatom Phaeodactylum tricornutum. Evidence for a diadinoxanthin-binding subcomplex.
    Guglielmi G; Lavaud J; Rousseau B; Etienne AL; Houmard J; Ruban AV
    FEBS J; 2005 Sep; 272(17):4339-48. PubMed ID: 16128804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cadmium inhibits epoxidation of diatoxanthin to diadinoxanthin in the xanthophyll cycle of the marine diatom Phaeodactylum tricornutum.
    Bertrand M; Schoefs B; Siffel P; Rohacek K; Molnar I
    FEBS Lett; 2001 Nov; 508(1):153-6. PubMed ID: 11707287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering the Unicellular Alga
    Manfellotto F; Stella GR; Falciatore A; Brunet C; Ferrante MI
    Antioxidants (Basel); 2020 Aug; 9(8):. PubMed ID: 32824292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The fine-tuning of NPQ in diatoms relies on the regulation of both xanthophyll cycle enzymes.
    Blommaert L; Chafai L; Bailleul B
    Sci Rep; 2021 Jun; 11(1):12750. PubMed ID: 34140542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of a highly active and DeltapH-regulated diatoxanthin epoxidase for the regulation of the PS II antenna function in diadinoxanthin cycle containing algae.
    Goss R; Ann Pinto E; Wilhelm C; Richter M
    J Plant Physiol; 2006 Oct; 163(10):1008-21. PubMed ID: 16971213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silencing of the violaxanthin de-epoxidase gene in the diatom Phaeodactylum tricornutum reduces diatoxanthin synthesis and non-photochemical quenching.
    Lavaud J; Materna AC; Sturm S; Vugrinec S; Kroth PG
    PLoS One; 2012; 7(5):e36806. PubMed ID: 22629333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The regulation of xanthophyll cycle activity and of non-photochemical fluorescence quenching by two alternative electron flows in the diatoms Phaeodactylum tricornutum and Cyclotella meneghiniana.
    Grouneva I; Jakob T; Wilhelm C; Goss R
    Biochim Biophys Acta; 2009 Jul; 1787(7):929-38. PubMed ID: 19232316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms.
    Coesel S; Oborník M; Varela J; Falciatore A; Bowler C
    PLoS One; 2008 Aug; 3(8):e2896. PubMed ID: 18682837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green diatom mutants reveal an intricate biosynthetic pathway of fucoxanthin.
    Bai Y; Cao T; Dautermann O; Buschbeck P; Cantrell MB; Chen Y; Lein CD; Shi X; Ware MA; Yang F; Zhang H; Zhang L; Peers G; Li X; Lohr M
    Proc Natl Acad Sci U S A; 2022 Sep; 119(38):e2203708119. PubMed ID: 36095219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supplementary ultraviolet-B radiation induces a rapid reversal of the diadinoxanthin cycle in the strong light-exposed diatom Phaeodactylum tricornutum.
    Mewes H; Richter M
    Plant Physiol; 2002 Nov; 130(3):1527-35. PubMed ID: 12428017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitation relaxation dynamics of carotenoids constituting the diadinoxanthin cycle.
    Kagatani K; Nagao R; Shen JR; Yamano Y; Takaichi S; Akimoto S
    Photosynth Res; 2022 Oct; 154(1):13-19. PubMed ID: 35951151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation.
    Yi Z; Xu M; Magnusdottir M; Zhang Y; Brynjolfsson S; Fu W
    Mar Drugs; 2015 Sep; 13(10):6138-51. PubMed ID: 26426027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning, identification and functional characterization of two cytochrome P450 carotenoids hydroxylases from the diatom Phaeodactylum tricornutum.
    Cui H; Ma H; Cui Y; Zhu X; Qin S; Li R
    J Biosci Bioeng; 2019 Dec; 128(6):755-765. PubMed ID: 31277909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of Mutants of Nuclear-Encoded Plastid Proteins Using CRISPR/Cas9 in the Diatom Phaeodactylum tricornutum.
    Allorent G; Guglielmino E; Giustini C; Courtois F
    Methods Mol Biol; 2018; 1829():367-378. PubMed ID: 29987734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of sequence motifs in Lhcx proteins that confer qE-based photoprotection in the diatom Phaeodactylum tricornutum.
    Buck JM; Kroth PG; Lepetit B
    Plant J; 2021 Dec; 108(6):1721-1734. PubMed ID: 34651379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.