These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38667867)

  • 1. Efficient Implementation of Discrete-Time Quantum Walks on Quantum Computers.
    Razzoli L; Cenedese G; Bondani M; Benenti G
    Entropy (Basel); 2024 Apr; 26(4):. PubMed ID: 38667867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-qubit quantum computing using discrete-time quantum walks on closed graphs.
    Chawla P; Singh S; Agarwal A; Srinivasan S; Chandrashekar CM
    Sci Rep; 2023 Jul; 13(1):12078. PubMed ID: 37495607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal quantum computing using single-particle discrete-time quantum walk.
    Singh S; Chawla P; Sarkar A; Chandrashekar CM
    Sci Rep; 2021 Jun; 11(1):11551. PubMed ID: 34078984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the use of discrete-time quantum walks in decision theory.
    Chen M; Ferro GM; Sornette D
    PLoS One; 2022; 17(8):e0273551. PubMed ID: 36040872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum walk processes in quantum devices.
    Madhu AK; Melnikov AA; Fedichkin LE; Alodjants AP; Lee RK
    Heliyon; 2023 Mar; 9(3):e13416. PubMed ID: 36895413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Demonstration of two-qubit algorithms with a superconducting quantum processor.
    DiCarlo L; Chow JM; Gambetta JM; Bishop LS; Johnson BR; Schuster DI; Majer J; Blais A; Frunzio L; Girvin SM; Schoelkopf RJ
    Nature; 2009 Jul; 460(7252):240-4. PubMed ID: 19561592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementation of a Toffoli gate with superconducting circuits.
    Fedorov A; Steffen L; Baur M; da Silva MP; Wallraff A
    Nature; 2011 Dec; 481(7380):170-2. PubMed ID: 22170609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reducing CNOT count in quantum Fourier transform for the linear nearest-neighbor architecture.
    Park B; Ahn D
    Sci Rep; 2023 May; 13(1):8638. PubMed ID: 37244939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photonic Discrete-time Quantum Walks and Applications.
    Neves L; Puentes G
    Entropy (Basel); 2018 Sep; 20(10):. PubMed ID: 33265820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient quantum walk on a quantum processor.
    Qiang X; Loke T; Montanaro A; Aungskunsiri K; Zhou X; O'Brien JL; Wang JB; Matthews JCF
    Nat Commun; 2016 May; 7():11511. PubMed ID: 27146471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum walks and Dirac cellular automata on a programmable trapped-ion quantum computer.
    Huerta Alderete C; Singh S; Nguyen NH; Zhu D; Balu R; Monroe C; Chandrashekar CM; Linke NM
    Nat Commun; 2020 Jul; 11(1):3720. PubMed ID: 32709855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum circuit mapping for universal and scalable computing in MZI-based integrated photonics.
    Kwon Y; Baldazzi A; Pavesi L; Choi BS
    Opt Express; 2024 Mar; 32(7):12852-12881. PubMed ID: 38571096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel entangling operations on a universal ion-trap quantum computer.
    Figgatt C; Ostrander A; Linke NM; Landsman KA; Zhu D; Maslov D; Monroe C
    Nature; 2019 Aug; 572(7769):368-372. PubMed ID: 31341283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum teleportation of physical qubits into logical code spaces.
    Luo YH; Chen MC; Erhard M; Zhong HS; Wu D; Tang HY; Zhao Q; Wang XL; Fujii K; Li L; Liu NL; Nemoto K; Munro WJ; Lu CY; Zeilinger A; Pan JW
    Proc Natl Acad Sci U S A; 2021 Sep; 118(36):. PubMed ID: 34479998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum Speedup and Mathematical Solutions of Implementing Bio-Molecular Solutions for the Independent Set Problem on IBM Quantum Computers.
    Chang WL; Chen JC; Chung WY; Hsiao CY; Wong R; Vasilakos AV
    IEEE Trans Nanobioscience; 2021 Jul; 20(3):354-376. PubMed ID: 33900920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GASP: a genetic algorithm for state preparation on quantum computers.
    Creevey FM; Hill CD; Hollenberg LCL
    Sci Rep; 2023 Jul; 13(1):11956. PubMed ID: 37488141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum error mitigation via quantum-noise-effect circuit groups.
    Hama Y; Nishi H
    Sci Rep; 2024 Mar; 14(1):6077. PubMed ID: 38480717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental one-way quantum computing.
    Walther P; Resch KJ; Rudolph T; Schenck E; Weinfurter H; Vedral V; Aspelmeyer M; Zeilinger A
    Nature; 2005 Mar; 434(7030):169-76. PubMed ID: 15758991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universal programmable quantum circuit schemes to emulate an operator.
    Daskin A; Grama A; Kollias G; Kais S
    J Chem Phys; 2012 Dec; 137(23):234112. PubMed ID: 23267476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics and energy spectra of aperiodic discrete-time quantum walks.
    Lo Gullo N; Ambarish CV; Busch T; Dell'Anna L; Chandrashekar CM
    Phys Rev E; 2017 Jul; 96(1-1):012111. PubMed ID: 29347233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.