BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38668072)

  • 21. Utility of 18F-fluoro-deoxyglucose emission tomography/computed tomography fusion imaging (18F-FDG PET/CT) in combination with ultrasonography for axillary staging in primary breast cancer.
    Ueda S; Tsuda H; Asakawa H; Omata J; Fukatsu K; Kondo N; Kondo T; Hama Y; Tamura K; Ishida J; Abe Y; Mochizuki H
    BMC Cancer; 2008 Jun; 8():165. PubMed ID: 18541009
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Axillary lymph node metastasis prediction by contrast-enhanced computed tomography images for breast cancer patients based on deep learning.
    Liu Z; Ni S; Yang C; Sun W; Huang D; Su H; Shu J; Qin N
    Comput Biol Med; 2021 Sep; 136():104715. PubMed ID: 34388460
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Positron emission tomography-computed tomography in the detection of axillary lymph node metastasis in patients with early stage breast cancer.
    Chae BJ; Bae JS; Kang BJ; Kim SH; Jung SS; Song BJ
    Jpn J Clin Oncol; 2009 May; 39(5):284-9. PubMed ID: 19318373
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diagnostic performance of fluorodeoxyglucose-positron emission tomography/computed tomography combined with ultrasonography-guided fine needle aspiration cytology for identifying axillary lymph node status in patients with breast cancer.
    Machida Y; Kubota K; Katayama T; Toriihara A; Shibuya H
    Eur J Surg Oncol; 2013 Jan; 39(1):26-30. PubMed ID: 23122913
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep learning radiomics of ultrasonography: Identifying the risk of axillary non-sentinel lymph node involvement in primary breast cancer.
    Guo X; Liu Z; Sun C; Zhang L; Wang Y; Li Z; Shi J; Wu T; Cui H; Zhang J; Tian J; Tian J
    EBioMedicine; 2020 Oct; 60():103018. PubMed ID: 32980697
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.
    Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H
    EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer.
    Zheng X; Yao Z; Huang Y; Yu Y; Wang Y; Liu Y; Mao R; Li F; Xiao Y; Wang Y; Hu Y; Yu J; Zhou J
    Nat Commun; 2020 Mar; 11(1):1236. PubMed ID: 32144248
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of preoperative ultrasonography and fine-needle aspiration of axillary lymph nodes on surgical management of primary breast cancer.
    Park SH; Kim MJ; Park BW; Moon HJ; Kwak JY; Kim EK
    Ann Surg Oncol; 2011 Mar; 18(3):738-44. PubMed ID: 20890729
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diagnostic performance of T2-weighted imaging and intravoxel incoherent motion diffusion-weighted MRI for predicting metastatic axillary lymph nodes in T1 and T2 stage breast cancer.
    Liu Y; Luo H; Wang C; Chen X; Wang M; Zhou P; Ren J
    Acta Radiol; 2022 Apr; 63(4):447-457. PubMed ID: 33779304
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reliability of predicting low-burden (≤ 2) positive axillary lymph nodes indicating sentinel lymph node biopsy in primary operable breast cancer - a retrospective comparative study with PET/CT and breast MRI.
    Sae-Lim C; Wu WP; Chang MC; Lai HW; Chen ST; Chou CT; Liao CY; Huang HI; Chen ST; Chen DR; Hung CL
    World J Surg Oncol; 2024 Jan; 22(1):12. PubMed ID: 38183069
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A prospective comparative study of ultrasonography, contrast-enhanced MRI and 18F-FDG PET/CT for preoperative detection of axillary lymph node metastasis in breast cancer patients.
    Guney IB; Dalci K; Teke ZT; Kucuker KA
    Ann Ital Chir; 2020; 91():458-464. PubMed ID: 32213685
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of Machine Learning Algorithm in Predicting Axillary Lymph Node Metastasis from Breast Cancer on Preoperative Chest CT.
    Park S; Kim JH; Cha YK; Chung MJ; Woo JH; Park S
    Diagnostics (Basel); 2023 Sep; 13(18):. PubMed ID: 37761320
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Axillary lymph node dissection is not obligatory in breast cancer patients with biopsy-proven axillary lymph node metastasis.
    Yoo TK; Kang BJ; Kim SH; Song BJ; Ahn J; Park WC; Chae BJ
    Breast Cancer Res Treat; 2020 Jun; 181(2):403-409. PubMed ID: 32328848
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The predictive value, sensitivity, specificity, and accuracy of PET CT in the evaluation of axillary metastases in breast cancer.
    Cetindag Ö; Avsar G; Hakseven M; Deryol R; Ertekin SÇ; Karasoy D; Eroglu A; Bayar S
    Eur Rev Med Pharmacol Sci; 2023 Oct; 27(20):10008-10015. PubMed ID: 37916371
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro diagnosis of axillary lymph node metastases in breast cancer by spectrum analysis of radio frequency echo signals.
    Tateishi T; Machi J; Feleppa EJ; Oishi R; Jucha J; Yanagihara E; McCarthy LJ; Noritomi T; Shirouzu K
    Ultrasound Med Biol; 1998 Oct; 24(8):1151-9. PubMed ID: 9833584
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of axillary lymph node involvement in breast cancer patients with positron emission tomography using radiolabeled 2-(fluorine-18)-fluoro-2-deoxy-D-glucose.
    Avril N; Dose J; Jänicke F; Ziegler S; Römer W; Weber W; Herz M; Nathrath W; Graeff H; Schwaiger M
    J Natl Cancer Inst; 1996 Sep; 88(17):1204-9. PubMed ID: 8780629
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multitask Deep Learning-Based Whole-Process System for Automatic Diagnosis of Breast Lesions and Axillary Lymph Node Metastasis Discrimination from Dynamic Contrast-Enhanced-MRI: A Multicenter Study.
    Zhou H; Hua Z; Gao J; Lin F; Chen Y; Zhang S; Zheng T; Wang Z; Shao H; Li W; Liu F; Li Q; Chen J; Wang X; Zhao F; Qu N; Xie H; Ma H; Zhang H; Mao N
    J Magn Reson Imaging; 2024 May; 59(5):1710-1722. PubMed ID: 37497811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The use of longitudinal CT-based radiomics and clinicopathological features predicts the pathological complete response of metastasized axillary lymph nodes in breast cancer.
    Wang J; Tian C; Zheng BJ; Zhang J; Jiao DC; Qu JR; Liu ZZ
    BMC Cancer; 2024 May; 24(1):549. PubMed ID: 38693523
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of [18F]fluorodeoxyglucose positron emission tomography-computed tomography, sonography, and sonographically guided fine-needle aspiration biopsy in the diagnosis of axillary lymph nodes in patients with breast cancer: comparison of diagnostic performance.
    Sohn YM; Hong IK; Han K
    J Ultrasound Med; 2014 Jun; 33(6):1013-21. PubMed ID: 24866608
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Major Reduction in Axillary Lymph Node Dissections After Neoadjuvant Systemic Therapy for Node-Positive Breast Cancer by combining PET/CT and the MARI Procedure.
    van der Noordaa MEM; van Duijnhoven FH; Straver ME; Groen EJ; Stokkel M; Loo CE; Elkhuizen PHM; Russell NS; Vrancken Peeters MTFD
    Ann Surg Oncol; 2018 Jun; 25(6):1512-1520. PubMed ID: 29511992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.