These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 38668154)
1. Engineering Nano-Sized Silicon Anodes with Conductive Networks toward a High Average Coulombic Efficiency of 90.2% via Plasma-Assisted Milling. Zuo Y; Xiong X; Yang Z; Sang Y; Zhang H; Meng F; Hu R Nanomaterials (Basel); 2024 Apr; 14(8):. PubMed ID: 38668154 [TBL] [Abstract][Full Text] [Related]
3. In situ formed Si nanoparticle network with micron-sized Si particles for lithium-ion battery anodes. Wu M; Sabisch JE; Song X; Minor AM; Battaglia VS; Liu G Nano Lett; 2013; 13(11):5397-402. PubMed ID: 24079331 [TBL] [Abstract][Full Text] [Related]
4. Industrial Silicon-Wafer-Wastage-Derived Carbon-Enfolded Si/Si-C/C Nanocomposite Anode Material through Plasma-Assisted Discharge Process for Rechargeable Li-Ion Storage. Muruganantham R; Yang CW; Wang HJ; Huang CH; Liu WR Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214990 [TBL] [Abstract][Full Text] [Related]
5. The preparation of mass producible, highly-cycling stable Si/C anode materials with nano-sized silicon crystals embedded in highly amorphous silicon matrix. Zhao M; Zhang J; Wang W; Zhang Q Nanotechnology; 2021 Sep; 32(48):. PubMed ID: 34425567 [TBL] [Abstract][Full Text] [Related]
6. Si anode with high initial Coulombic efficiency, long cycle life, and superior rate capability by integrated utilization of graphene and pitch-based carbon. Li H; Li Z; Qi J; Wang Z; Liu S; Long Y; Tan Y Nanotechnology; 2024 Jul; 35(38):. PubMed ID: 38906124 [TBL] [Abstract][Full Text] [Related]
7. Enabling SiO Yan MY; Li G; Zhang J; Tian YF; Yin YX; Zhang CJ; Jiang KC; Xu Q; Li HL; Guo YG ACS Appl Mater Interfaces; 2020 Jun; 12(24):27202-27209. PubMed ID: 32436378 [TBL] [Abstract][Full Text] [Related]
8. Growth of Vertical Graphene Sheets on Silicon Nanoparticles Well-Dispersed on Graphite Particles for High-Performance Lithium-Ion Battery Anode. Yu P; Li Z; Han M; Yu J Small; 2024 Apr; 20(17):e2307494. PubMed ID: 38041468 [TBL] [Abstract][Full Text] [Related]
9. Slidable and Highly Ionic Conductive Polymer Binder for High-Performance Si Anodes in Lithium-Ion Batteries. Cai Y; Liu C; Yu Z; Ma W; Jin Q; Du R; Qian B; Jin X; Wu H; Zhang Q; Jia X Adv Sci (Weinh); 2023 Feb; 10(6):e2205590. PubMed ID: 36563132 [TBL] [Abstract][Full Text] [Related]
10. Rational Design of Ion-Conductive Layer on Si Anode Enables Superior-Stable Lithium-Ion Batteries. Wang Z; Yao M; Luo H; Xu C; Tian H; Wang Q; Wu H; Zhang Q; Wu Y Small; 2024 Feb; 20(5):e2306428. PubMed ID: 37759404 [TBL] [Abstract][Full Text] [Related]
11. Self-Repairable Silicon Anodes Using a Multifunctional Binder for High-Performance Lithium-Ion Batteries. Malik YT; Shin SY; Jang JI; Kim HM; Cho S; Do YR; Jeon JW Small; 2023 Mar; 19(9):e2206141. PubMed ID: 36538734 [TBL] [Abstract][Full Text] [Related]
12. Mg Bian C; Fu R; Shi Z; Ji J; Zhang J; Chen W; Zhou X; Shi S; Liu Z ACS Appl Mater Interfaces; 2022 Apr; 14(13):15337-15345. PubMed ID: 35315640 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical Performance of an Ultrathin Surface Oxide-Modulated Nano-Si Anode Confined in a Graphite Matrix for Highly Reversible Lithium-Ion Batteries. Maddipatla R; Loka C; Lee KS ACS Appl Mater Interfaces; 2020 Dec; 12(49):54608-54618. PubMed ID: 33231419 [TBL] [Abstract][Full Text] [Related]
14. Scalable Engineering of Bulk Porous Si Anodes for High Initial Efficiency and High-Areal-Capacity Lithium-Ion Batteries. Han X; Zhang Z; Zheng G; You R; Wang J; Li C; Chen S; Yang Y ACS Appl Mater Interfaces; 2019 Jan; 11(1):714-721. PubMed ID: 30525409 [TBL] [Abstract][Full Text] [Related]
15. Li(+)-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries. Chen Y; Zeng S; Qian J; Wang Y; Cao Y; Yang H; Ai X ACS Appl Mater Interfaces; 2014 Mar; 6(5):3508-12. PubMed ID: 24467155 [TBL] [Abstract][Full Text] [Related]
16. Rational Design of Silicon Nanodots/Carbon Anodes by Partial Oxidization Strategy with High-Performance Lithium-Ion Storage. Ou S; Meng T; Xie Z; Feng J; Wang Q; Zhou D; Liu Z; Wang K; Meng C; Tong Y ACS Appl Mater Interfaces; 2022 Nov; 14(43):48801-48811. PubMed ID: 36263682 [TBL] [Abstract][Full Text] [Related]
17. Three-Dimensional Porous Si and SiO Su J; Zhao J; Li L; Zhang C; Chen C; Huang T; Yu A ACS Appl Mater Interfaces; 2017 May; 9(21):17807-17813. PubMed ID: 28485912 [TBL] [Abstract][Full Text] [Related]
18. High voltage electrolytes for lithium-ion batteries with micro-sized silicon anodes. Li AM; Wang Z; Pollard TP; Zhang W; Tan S; Li T; Jayawardana C; Liou SC; Rao J; Lucht BL; Hu E; Yang XQ; Borodin O; Wang C Nat Commun; 2024 Feb; 15(1):1206. PubMed ID: 38332019 [TBL] [Abstract][Full Text] [Related]
19. Microspheres of Si@Carbon-CNTs composites with a stable 3D interpenetrating structure applied in high-performance lithium-ion battery. Wang Z; Jing L; Zheng X; Xu Z; Yuan Y; Liu X; Fu A; Guo YG; Li H J Colloid Interface Sci; 2023 Jan; 629(Pt B):511-521. PubMed ID: 36174294 [TBL] [Abstract][Full Text] [Related]
20. Exploring the Potential of Carbonized Nano-Si within G@C@Si Anodes for Lithium-Ion Rechargeable Batteries. Maddipatla R; Loka C; Lee KS ACS Appl Mater Interfaces; 2023 Dec; 15(50):58437-58450. PubMed ID: 38079573 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]