These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38668170)

  • 1. Evaluation of the Thermal, Chemical, Mechanical, and Microbial Stability of New Nanohybrids Based on Carboxymethyl-Scleroglucan and Silica Nanoparticles for EOR Applications.
    Castro RH; Corredor LM; Llanos S; Rodríguez ZP; Burgos I; Niño JA; Idrobo EA; Romero Bohórquez AR; Zapata Acosta K; Franco CA; Cortés FB
    Nanomaterials (Basel); 2024 Apr; 14(8):. PubMed ID: 38668170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and Characterization of New Nanohybrids Based on Carboxymethyl Scleroglucan and Silica Nanoparticles.
    Castro RH; Corredor LM; Burgos I; Llanos S; Franco CA; Cortés FB; Idrobo EA; Bohórquez ARR
    Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Investigation of the Viscosity and Stability of Scleroglucan-Based Nanofluids for Enhanced Oil Recovery.
    Castro RH; Corredor LM; Llanos S; Causil MA; Arias A; Pérez E; Quintero HI; Romero Bohórquez AR; Franco CA; Cortés FB
    Nanomaterials (Basel); 2024 Jan; 14(2):. PubMed ID: 38251121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carboxymethyl Scleroglucan Synthesized via
    Castro RH; Burgos I; Corredor LM; Llanos S; Franco CA; Cortés FB; Romero Bohórquez AR
    Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38257006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Viscosity Changes and Rheological Properties of Diutan Gum, Xanthan Gum, and Scleroglucan in Extreme Reservoirs.
    Gao X; Huang L; Xiu J; Yi L; Zhao Y
    Polymers (Basel); 2023 Nov; 15(21):. PubMed ID: 37960018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Investigation of Polymer-Coated Silica Nanoparticles for EOR under Harsh Reservoir Conditions of High Temperature and Salinity.
    Bila A; Torsæter O
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33803521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Investigation of Stability of Silica Nanoparticles at Reservoir Conditions for Enhanced Oil-Recovery Applications.
    Li S; Ng YH; Lau HC; Torsæter O; Stubbs LP
    Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32759669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Study on Enhancing Oil Recovery under High Temperature and High Salinity: Polysaccharides Versus Synthetic Polymer.
    Liang K; Han P; Chen Q; Su X; Feng Y
    ACS Omega; 2019 Jun; 4(6):10620-10628. PubMed ID: 31460160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laboratory Investigation of Nanofluid-Assisted Polymer Flooding in Carbonate Reservoirs.
    Ulasbek K; Hashmet MR; Pourafshary P; Muneer R
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review on application of nanoparticles for EOR purposes: history and current challenges.
    Iravani M; Khalilnezhad Z; Khalilnezhad A
    J Pet Explor Prod Technol; 2023; 13(4):959-994. PubMed ID: 36644438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced oil recovery from fractured carbonate reservoirs using nanoparticles with low salinity water and surfactant: A review on experimental and simulation studies.
    Dordzie G; Dejam M
    Adv Colloid Interface Sci; 2021 Jul; 293():102449. PubMed ID: 34034208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Investigation of the Effect of Adding Nanoparticles to Polymer Flooding in Water-Wet Micromodels.
    Rueda E; Akarri S; Torsæter O; Moreno RBZL
    Nanomaterials (Basel); 2020 Jul; 10(8):. PubMed ID: 32751330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism and Performance Analysis of Nanoparticle-Polymer Fluid for Enhanced Oil Recovery: A Review.
    Sun Y; Zhang W; Li J; Han R; Lu C
    Molecules; 2023 May; 28(11):. PubMed ID: 37298805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of polymer nanohybrids for oil recovery.
    Corredor LM; Husein MM; Maini BB
    Adv Colloid Interface Sci; 2019 Oct; 272():102018. PubMed ID: 31450155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Salinity and High Temperature Stable Colloidal Silica Nanoparticles with Wettability Alteration Ability for EOR Applications.
    Hadia NJ; Ng YH; Stubbs LP; Torsæter O
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33799757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Updated Perceptions on Polymer-Based Enhanced Oil Recovery toward High-Temperature High-Salinity Tolerance for Successful Field Applications in Carbonate Reservoirs.
    Hassan AM; Al-Shalabi EW; Ayoub MA
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of thermal, alkaline and ultrasonic treatments on scleroglucan stability and flow behavior.
    Viñarta SC; Delgado OD; Figueroa LI; Fariña JI
    Carbohydr Polym; 2013 Apr; 94(1):496-504. PubMed ID: 23544567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental evaluation of oil recovery mechanism using a variety of surface-modified silica nanoparticles: Role of in-situ surface-modification in oil-wet system.
    Adil M; Mohd Zaid H; Raza F; Agam MA
    PLoS One; 2020; 15(7):e0236837. PubMed ID: 32730369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental study on electromagnetic-assisted ZnO nanofluid flooding for enhanced oil recovery (EOR).
    Adil M; Lee K; Mohd Zaid H; Ahmad Latiff NR; Alnarabiji MS
    PLoS One; 2018; 13(2):e0193518. PubMed ID: 29489897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic effects of ultrasonic irradiation and α-Fe
    Razavifar M; Qajar J
    Ultrasonics; 2022 Mar; 120():106655. PubMed ID: 34891068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.