These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38668189)

  • 1. Plasmonic Au@Ag Core-Shell Nanoisland Film for Photothermal Inactivation and Surface-Enhanced Raman Scattering Detection of Bacteria.
    Husain S; Mutalik C; Yougbaré S; Chen CY; Kuo TR
    Nanomaterials (Basel); 2024 Apr; 14(8):. PubMed ID: 38668189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Gold Nanoisland Film for Bacterial Theranostics.
    Tan SH; Yougbaré S; Tao HY; Chang CC; Kuo TR
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controllable Construction of Aptamer-Modified Fe
    Wang Y; Wang S; Zou Y; Gao Y; Ma B; Zhang Y; Dai H; Ma J; Zhao W
    Molecules; 2024 Jul; 29(15):. PubMed ID: 39124998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional Plasmon-Tunable Au Nanostars and Their Applications in Highly Efficient Photothermal Inactivation and Ultra-Sensitive SERS Detection.
    Zhou T; Huang J; Zhao W; Guo R; Cui S; Li Y; Zhang X; Liu Y; Zhang Q
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman Reporter-Coupled Ag(core)@Au(shell) Nanostars for in Vivo Improved Surface Enhanced Raman Scattering Imaging and Near-infrared-Triggered Photothermal Therapy in Breast Cancers.
    Zeng L; Pan Y; Wang S; Wang X; Zhao X; Ren W; Lu G; Wu A
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16781-91. PubMed ID: 26204589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth of Spherical Gold Satellites on the Surface of Au@Ag@SiO
    Yang Y; Zhu J; Zhao J; Weng GJ; Li JJ; Zhao JW
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3617-3626. PubMed ID: 30608142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structural transition of bimetallic Ag-Au from core/shell to alloy and SERS application.
    Ha Pham TT; Vu XH; Dien ND; Trang TT; Van Truong N; Thanh TD; Tan PM; Ca NX
    RSC Adv; 2020 Jun; 10(41):24577-24594. PubMed ID: 35516184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Total Aqueous Synthesis of Au@Cu
    Lv Q; Min H; Duan DB; Fang W; Pan GM; Shen AG; Wang QQ; Nie G; Hu JM
    Adv Healthc Mater; 2019 Jan; 8(2):e1801257. PubMed ID: 30548216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Python-assisted detection and photothermal inactivation of Salmonella typhimurium and Staphylococcus aureus on a background-free SERS chip.
    Zheng S; Xiao J; Zhang J; Sun Q; Liu D; Liu Y; Gao X
    Biosens Bioelectron; 2024 Mar; 247():115913. PubMed ID: 38091898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesoporous silica-coated plasmonic nanostructures for surface-enhanced Raman scattering detection and photothermal therapy.
    Yang J; Shen D; Zhou L; Li W; Fan J; El-Toni AM; Zhang WX; Zhang F; Zhao D
    Adv Healthc Mater; 2014 Oct; 3(10):1620-8. PubMed ID: 24665061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core-shell-shell nanorods for controlled release of silver that can serve as a nanoheater for photothermal treatment on bacteria.
    Hu B; Wang N; Han L; Chen ML; Wang JH
    Acta Biomater; 2015 Jan; 11():511-9. PubMed ID: 25219350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermally generated Au-Ag nanostructures with tunable localized surface plasmon resonance as SERS activity substrates.
    Ji J; Li Z
    Heliyon; 2023 Jul; 9(7):e17749. PubMed ID: 37449172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shell thickness-dependent Au@Ag nanoparticles aggregates for high-performance SERS applications.
    Wang K; Sun DW; Pu H; Wei Q
    Talanta; 2019 Apr; 195():506-515. PubMed ID: 30625576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localized surface plasmon resonance and surface enhanced Raman scattering responses of Au@Ag core-shell nanorods with different thickness of Ag shell.
    Ma Y; Zhou J; Zou W; Jia Z; Petti L; Mormile P
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4245-50. PubMed ID: 24738378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ Raman monitoring of competitive adsorption of Ag and Au nanoparticles onto a poly(4-vinyl pyridine) surface.
    Kim K; Ryoo H; Shin KS
    Appl Spectrosc; 2011 Jan; 65(1):60-5. PubMed ID: 21211155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bimetallic Au/Ag Core-Shell Superstructures with Tunable Surface Plasmon Resonance in the Near-Infrared Region and High Performance Surface-Enhanced Raman Scattering.
    Dai L; Song L; Huang Y; Zhang L; Lu X; Zhang J; Chen T
    Langmuir; 2017 Jun; 33(22):5378-5384. PubMed ID: 28502174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of Silica@Au Hybrid Nanostars for Enhanced SERS and Photothermal Effect.
    Kaur G; Kaur V; Kaur N; Kaur C; Sood K; Shanavas A; Sen T
    Chemphyschem; 2023 Nov; 24(22):e202200809. PubMed ID: 37515550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Au@Ag core-shell nanocubes: epitaxial growth synthesis and surface-enhanced Raman scattering performance.
    Liu Y; Zhou J; Wang B; Jiang T; Ho HP; Petti L; Mormile P
    Phys Chem Chem Phys; 2015 Mar; 17(10):6819-26. PubMed ID: 25670345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and Characterization of a Highly-Sensitive Surface-Enhanced Raman Scattering Nanosensor for Detecting Glucose in Urine.
    Lu Y; Zhou T; You R; Wu Y; Shen H; Feng S; Su J
    Nanomaterials (Basel); 2018 Aug; 8(8):. PubMed ID: 30127278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulated synthesis of an Au NB-DT@Ag bimetallic core-molecule-shell nanostructure for reliable SERS detection.
    Ren H; Sun Y; Wang J; Qiu H; Zhang S; Zhang Y; Yu X; Hu J; Hu Y
    Anal Methods; 2023 Aug; 15(33):4094-4103. PubMed ID: 37551432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.