These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38668701)

  • 21. On the Colloidal Stability of PbS Quantum Dots Capped with Methylammonium Lead Iodide Ligands.
    Bederak D; Sukharevska N; Kahmann S; Abdu-Aguye M; Duim H; Dirin DN; Kovalenko MV; Portale G; Loi MA
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52959-52966. PubMed ID: 33174723
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrostatically driven resonance energy transfer in "cationic" biocompatible indium phosphide quantum dots.
    Devatha G; Roy S; Rao A; Mallick A; Basu S; Pillai PP
    Chem Sci; 2017 May; 8(5):3879-3884. PubMed ID: 28626557
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Emission Enhancement of Cu-Doped InP Quantum Dots through Double Shelling Scheme.
    Kim HJ; Jo JH; Yoon SY; Jo DY; Kim HS; Park B; Yang H
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31311083
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Organic-to-Aqueous Phase Transfer of Cadmium Chalcogenide Quantum Dots using a Sulfur-Free Ligand for Enhanced Photoluminescence and Oxidative Stability.
    Calzada R; Thompson CM; Westmoreland DE; Edme K; Weiss EA
    Chem Mater; 2016 Sep; 28(18):6716-6723. PubMed ID: 28260836
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-Performance Hybrid InP QDs/Black Phosphorus Photodetector.
    Kwak DH; Ramasamy P; Lee YS; Jeong MH; Lee JS
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):29041-29046. PubMed ID: 31322342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrostatic Stabilized InP Colloidal Quantum Dots with High Photoluminescence Efficiency.
    Mnoyan AN; Kirakosyan AG; Kim H; Jang HS; Jeon DY
    Langmuir; 2015 Jun; 31(25):7117-21. PubMed ID: 26043065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unprecedented surface stabilized InP quantum dots with bidentate ligands.
    Seo H; Bang M; Kim Y; Son C; Jeon HB; Kim SW
    RSC Adv; 2020 Mar; 10(19):11517-11523. PubMed ID: 35495314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of Direct Solvent-Quantum Dot Interaction on the Optical Properties of Colloidal Monolayer WS
    Jin H; Baek B; Kim D; Wu F; Batteas JD; Cheon J; Son DH
    Nano Lett; 2017 Dec; 17(12):7471-7477. PubMed ID: 29076338
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dielectric response function for colloidal semiconductor quantum dots.
    Karpulevich A; Bui H; Wang Z; Hapke S; Palencia Ramírez C; Weller H; Bester G
    J Chem Phys; 2019 Dec; 151(22):224103. PubMed ID: 31837677
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Colloidal, Room-Temperature Growth of Metal Oxide Shells on InP Quantum Dots.
    Park N; Beck RA; Hoang KK; Ladd DM; Abramson JE; Rivera-Maldonado RA; Nguyen HA; Monahan M; Seidler GT; Toney MF; Li X; Cossairt BM
    Inorg Chem; 2023 May; 62(17):6674-6687. PubMed ID: 37042788
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancing light absorption by colloidal metal chalcogenide quantum dots via chalcogenol(ate) surface ligands.
    Giansante C
    Nanoscale; 2019 May; 11(19):9478-9487. PubMed ID: 31045198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface Engineering of Room Temperature-Grown Inorganic Perovskite Quantum Dots for Highly Efficient Inverted Light-Emitting Diodes.
    Moyen E; Jun H; Kim HM; Jang J
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42647-42656. PubMed ID: 30419162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Threonine functionalized colloidal cadmium sulfide (CdS) quantum dots: The role of solvent and counterion in ligand induced chiroptical properties.
    Kwon YH; Joh YA; Leonard BM; Balaz M; Varga K
    J Colloid Interface Sci; 2023 Jul; 642():771-778. PubMed ID: 37037081
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metal Fluorides Passivate II-VI and III-V Quantum Dots.
    Valleix R; Zhang W; Jordan AJ; Guillemeney L; Castro LG; Zekarias BL; Park SV; Wang O; Owen JS
    Nano Lett; 2024 May; 24(19):5722-5728. PubMed ID: 38712788
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Organic-inorganic hybrid perovskite quantum dots with high PLQY and enhanced carrier mobility through crystallinity control by solvent engineering and solid-state ligand exchange.
    Woo Choi J; Woo HC; Huang X; Jung WG; Kim BJ; Jeon SW; Yim SY; Lee JS; Lee CL
    Nanoscale; 2018 Jul; 10(28):13356-13367. PubMed ID: 29785443
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Halide-, Hybrid-, and Perovskite-Functionalized Light Absorbing Quantum Materials of p-i-n Heterojunction Solar Cells.
    Beygi H; Sajjadi SA; Babakhani A; Young JF; van Veggel FCJM
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30283-30295. PubMed ID: 30107115
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acid-Base Mediated Ligand Exchange on Near-Infrared Absorbing, Indium-Based III-V Colloidal Quantum Dots.
    Leemans J; Dümbgen KC; Minjauw MM; Zhao Q; Vantomme A; Infante I; Detavernier C; Hens Z
    J Am Chem Soc; 2021 Mar; 143(11):4290-4301. PubMed ID: 33710882
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering Brightness Matched Indium Phosphide Quantum Dots.
    Toufanian R; Chern M; Kong VH; Dennis AM
    Chem Mater; 2021 Mar; 33(6):1964-1975. PubMed ID: 34219920
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Green Synthesis of InP/ZnS Core/Shell Quantum Dots for Application in Heavy-Metal-Free Light-Emitting Diodes.
    Kuo TR; Hung ST; Lin YT; Chou TL; Kuo MC; Kuo YP; Chen CC
    Nanoscale Res Lett; 2017 Sep; 12(1):537. PubMed ID: 28929358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hybrid Colloidal Stabilization Mechanism toward Improved Photoluminescence and Stability of CdSe/CdS Core/Shell Quantum Dots.
    Wu F; Zhang Y; Zhang Z; Li G; Li M; Lan X; Sun T; Jiang Y
    Langmuir; 2017 Jul; 33(28):7124-7129. PubMed ID: 28661693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.