These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38668824)

  • 1. The Effect of Spin Relaxation on Magnetic Compass Sensitivity in ErCry4a.
    Grüning G; Gerhards L; Wong SY; Kattnig DR; Solov'yov IA
    Chemphyschem; 2024 Oct; 25(19):e202400129. PubMed ID: 38668824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron spin relaxation in cryptochrome-based magnetoreception.
    Kattnig DR; Solov'yov IA; Hore PJ
    Phys Chem Chem Phys; 2016 May; 18(18):12443-56. PubMed ID: 27020113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Dynamical Degrees of Freedom on Magnetic Compass Sensitivity: A Comparison of Plant and Avian Cryptochromes.
    Grüning G; Wong SY; Gerhards L; Schuhmann F; Kattnig DR; Hore PJ; Solov'yov IA
    J Am Chem Soc; 2022 Dec; 144(50):22902-22914. PubMed ID: 36459632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spin relaxation of radicals in cryptochrome and its role in avian magnetoreception.
    Worster S; Kattnig DR; Hore PJ
    J Chem Phys; 2016 Jul; 145(3):035104. PubMed ID: 27448908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling spin relaxation in complex radical systems using MolSpin.
    Gerhards L; Nielsen C; Kattnig DR; Hore PJ; Solov'yov IA
    J Comput Chem; 2023 Jul; 44(19):1704-1714. PubMed ID: 37186467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron spin relaxation in radical pairs: Beyond the Redfield approximation.
    Fay TP; Lindoy LP; Manolopoulos DE
    J Chem Phys; 2019 Oct; 151(15):154117. PubMed ID: 31640365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The quantum needle of the avian magnetic compass.
    Hiscock HG; Worster S; Kattnig DR; Steers C; Jin Y; Manolopoulos DE; Mouritsen H; Hore PJ
    Proc Natl Acad Sci U S A; 2016 Apr; 113(17):4634-9. PubMed ID: 27044102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity enhancement of radical-pair magnetoreceptors as a result of spin decoherence.
    Luo J
    J Chem Phys; 2024 Feb; 160(7):. PubMed ID: 38380753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic field effects on radical pair reactions: estimation of
    Wong SY; Benjamin P; Hore PJ
    Phys Chem Chem Phys; 2023 Jan; 25(2):975-982. PubMed ID: 36519379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How quantum is radical pair magnetoreception?
    Fay TP; Lindoy LP; Manolopoulos DE; Hore PJ
    Faraday Discuss; 2019 Dec; 221(0):77-91. PubMed ID: 31539011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possibility of two-dimensional ordering of cryptochrome 4a from European robin.
    Arai S; Kobayashi R; Adachi M; Kimura K; Masai H
    Biochem Biophys Res Commun; 2024 Aug; 737():150513. PubMed ID: 39126860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic magnetic field effects in the re-oxidation of cryptochrome in the presence of scavenger radicals.
    Deviers J; Cailliez F; de la Lande A; Kattnig DR
    J Chem Phys; 2022 Jan; 156(2):025101. PubMed ID: 35032990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observations about utilitarian coherence in the avian compass.
    Smith LD; Deviers J; Kattnig DR
    Sci Rep; 2022 Apr; 12(1):6011. PubMed ID: 35397661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking the Electron Transfer Cascade in European Robin Cryptochrome 4 Mutants.
    Timmer D; Frederiksen A; Lünemann DC; Thomas AR; Xu J; Bartölke R; Schmidt J; Kubař T; De Sio A; Solov'yov IA; Mouritsen H; Lienau C
    J Am Chem Soc; 2023 May; 145(21):11566-11578. PubMed ID: 37195086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radical-Pair-Based Magnetoreception Amplified by Radical Scavenging: Resilience to Spin Relaxation.
    Kattnig DR
    J Phys Chem B; 2017 Nov; 121(44):10215-10227. PubMed ID: 29028342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proposal to use superparamagnetic nanoparticles to test the role of cryptochrome in magnetoreception.
    Worster SB; Hore PJ
    J R Soc Interface; 2018 Oct; 15(147):. PubMed ID: 30381345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative radical pairs for cryptochrome-based magnetoreception.
    Lee AA; Lau JC; Hogben HJ; Biskup T; Kattnig DR; Hore PJ
    J R Soc Interface; 2014 Jun; 11(95):20131063. PubMed ID: 24671932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear polarization effects in cryptochrome-based magnetoreception.
    Wong SY; Solov'yov IA; Hore PJ; Kattnig DR
    J Chem Phys; 2021 Jan; 154(3):035102. PubMed ID: 33499614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viability of superoxide-containing radical pairs as magnetoreceptors.
    Player TC; Hore PJ
    J Chem Phys; 2019 Dec; 151(22):225101. PubMed ID: 31837685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of chiral-induced spin selectivity in the radical pair mechanism of avian magnetoreception.
    Tiwari Y; Poonia VS
    Phys Rev E; 2022 Dec; 106(6-1):064409. PubMed ID: 36671157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.