These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38668882)

  • 21. Generalizable calibrated machine learning models for real-time atrial fibrillation risk prediction in ICU patients.
    Verhaeghe J; De Corte T; Sauer CM; Hendriks T; Thijssens OWM; Ongenae F; Elbers P; De Waele J; Van Hoecke S
    Int J Med Inform; 2023 Jul; 175():105086. PubMed ID: 37148868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Applying machine learning to continuously monitored physiological data.
    Rush B; Celi LA; Stone DJ
    J Clin Monit Comput; 2019 Oct; 33(5):887-893. PubMed ID: 30417258
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploiting big data for critical care research.
    Docherty AB; Lone NI
    Curr Opin Crit Care; 2015 Oct; 21(5):467-72. PubMed ID: 26348424
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ASAS-NANP symposium: mathematical modeling in animal nutrition-Making sense of big data and machine learning: how open-source code can advance training of animal scientists.
    Brennan JR; Menendez HM; Ehlert K; Tedeschi LO
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 37997926
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Outsourcing medical data analyses: can technology overcome legal, privacy, and confidentiality issues?
    Brumen B; Heričko M; Sevčnikar A; Završnik J; Hölbl M
    J Med Internet Res; 2013 Dec; 15(12):e283. PubMed ID: 24342053
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A privacy protection method for health care big data management based on risk access control.
    Shi M; Jiang R; Hu X; Shang J
    Health Care Manag Sci; 2020 Sep; 23(3):427-442. PubMed ID: 31338637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. LoAdaBoost: Loss-based AdaBoost federated machine learning with reduced computational complexity on IID and non-IID intensive care data.
    Huang L; Yin Y; Fu Z; Zhang S; Deng H; Liu D
    PLoS One; 2020; 15(4):e0230706. PubMed ID: 32302316
    [TBL] [Abstract][Full Text] [Related]  

  • 28. What every intensivist should know about Big Data and targeted machine learning in the intensive care unit.
    Cherifa M; Pirracchio R
    Rev Bras Ter Intensiva; 2019; 31(4):444-446. PubMed ID: 31967217
    [No Abstract]   [Full Text] [Related]  

  • 29. Big Data Analysis and Machine Learning in Intensive Care Medicine: Identifying new ethical and legal challenges.
    Lazcoz Moratinos G; de Miguel Beriain I
    Med Intensiva (Engl Ed); 2020; 44(5):319-320. PubMed ID: 31924445
    [No Abstract]   [Full Text] [Related]  

  • 30. In reply to «Big Data Analysis and Machine Learning in Intensive Care Medicine: Identifying new ethical and legal challenges».
    Núñez Reiz A; Sánchez García M
    Med Intensiva (Engl Ed); 2020; 44(5):320. PubMed ID: 32113732
    [No Abstract]   [Full Text] [Related]  

  • 31. Information management systems for intensive care.
    Bowes CL; Wilson AJ
    Comput Methods Programs Biomed; 1994 Jul; 44(1):31-5. PubMed ID: 7988109
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using big data analytics to improve HIV medical care utilisation in South Carolina: A study protocol.
    Olatosi B; Zhang J; Weissman S; Hu J; Haider MR; Li X
    BMJ Open; 2019 Jul; 9(7):e027688. PubMed ID: 31326931
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Health care research: potential beneficiary of big data].
    Wegscheider K; Koch-Gromus U
    Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz; 2015 Aug; 58(8):806-812. PubMed ID: 26063522
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Developing an explainable machine learning model to predict the mechanical ventilation duration of patients with ARDS in intensive care units.
    Wang Z; Zhang L; Huang T; Yang R; Cheng H; Wang H; Yin H; Lyu J
    Heart Lung; 2023; 58():74-81. PubMed ID: 36423504
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimal intensive care outcome prediction over time using machine learning.
    Meiring C; Dixit A; Harris S; MacCallum NS; Brealey DA; Watkinson PJ; Jones A; Ashworth S; Beale R; Brett SJ; Singer M; Ercole A
    PLoS One; 2018; 13(11):e0206862. PubMed ID: 30427913
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Responsible data sharing in a big data-driven translational research platform: lessons learned.
    Kalkman S; Mostert M; Udo-Beauvisage N; van Delden JJ; van Thiel GJ
    BMC Med Inform Decis Mak; 2019 Dec; 19(1):283. PubMed ID: 31888593
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Big data: More than big data sets.
    Cobb AN; Benjamin AJ; Huang ES; Kuo PC
    Surgery; 2018 Oct; 164(4):640-642. PubMed ID: 30061040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Registries for rare diseases : OSSE - An open-source framework for technical implementation].
    Storf H; Schaaf J; Kadioglu D; Göbel J; Wagner TOF; Ückert F
    Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz; 2017 May; 60(5):523-531. PubMed ID: 28289778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Optimized Federated Learning Approach with the Data-Sharing Function to the Analysis of Cardiothoracic Time-Series Signals.
    Tan T; Wang J; Xu C; Tan Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-6. PubMed ID: 38082948
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Creating value in health care through big data: opportunities and policy implications.
    Roski J; Bo-Linn GW; Andrews TA
    Health Aff (Millwood); 2014 Jul; 33(7):1115-22. PubMed ID: 25006136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.