These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 38669057)
1. Finite Element Analysis and Design of a Flexible Thermoelectric Generator with a Rhombus Gap Structure. Li C; Jin J; Cao W; Sun X; Ding Q; Hou Y; Wang Z ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38669057 [TBL] [Abstract][Full Text] [Related]
2. Origami-Type Flexible Thermoelectric Generator Fabricated by Self-Folding. Sato Y; Terashima S; Iwase E Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677279 [TBL] [Abstract][Full Text] [Related]
3. Whole Fabric-Assisted Thermoelectric Devices for Wearable Electronics. Hou Y; Yang Y; Wang Z; Li Z; Zhang X; Bethers B; Xiong R; Guo H; Yu H Adv Sci (Weinh); 2022 Jan; 9(1):e2103574. PubMed ID: 34741444 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous Realization of Flexibility and Ultrahigh Normalized Power Density in a Heatsink-Free Thermoelectric Generator via Fine Thermal Regulation. Zhu S; Peng Y; Gao J; Miao L; Lai H; Liu C; Zhang J; Zhang Y; Zhou S; Koumoto K; Zhu T ACS Appl Mater Interfaces; 2022 Jan; 14(1):1045-1055. PubMed ID: 34965726 [TBL] [Abstract][Full Text] [Related]
5. Novel Thermoelectric Fabric Structure with Switched Thermal Gradient Direction toward Wearable In-Plane Thermoelectric Generators. Ding D; Wu Q; Li Q; Chen Y; Zhi C; Wei X; Wang J Small; 2024 May; 20(22):e2306830. PubMed ID: 38126556 [TBL] [Abstract][Full Text] [Related]
6. Enhanced Performance of Monolithic Chalcogenide Thermoelectric Modules for Energy Harvesting via Co-optimization of Experiment and Simulation. Lai H; Singh S; Peng Y; Hirata K; Ryu M; Ang AKR; Miao L; Takeuchi T ACS Appl Mater Interfaces; 2022 Aug; 14(34):38642-38650. PubMed ID: 35977402 [TBL] [Abstract][Full Text] [Related]
7. Flexible and Robust Thermoelectric Generators Based on All-Carbon Nanotube Yarn without Metal Electrodes. Choi J; Jung Y; Yang SJ; Oh JY; Oh J; Jo K; Son JG; Moon SE; Park CR; Kim H ACS Nano; 2017 Aug; 11(8):7608-7614. PubMed ID: 28700205 [TBL] [Abstract][Full Text] [Related]
8. Optimization of segmented thermoelectric generator using Taguchi and ANOVA techniques. Kishore RA; Sanghadasa M; Priya S Sci Rep; 2017 Dec; 7(1):16746. PubMed ID: 29196715 [TBL] [Abstract][Full Text] [Related]
9. High-Performance Flexible Thermoelectric Power Generator Using Laser Multiscanning Lift-Off Process. Kim SJ; Lee HE; Choi H; Kim Y; We JH; Shin JS; Lee KJ; Cho BJ ACS Nano; 2016 Dec; 10(12):10851-10857. PubMed ID: 28024371 [TBL] [Abstract][Full Text] [Related]
10. Experimental and Theoretical Investigation of the Effect of Filler Material on the Performance of Flexible and Rigid Thermoelectric Generators. Yusuf A; Demirci Y; Maras T; Moon SE; Pil-Im J; Kim JH; Ballikaya S ACS Appl Mater Interfaces; 2021 Dec; 13(51):61275-61285. PubMed ID: 34905915 [TBL] [Abstract][Full Text] [Related]
11. High-Performance Stretchable Thermoelectric Generator for Self-Powered Wearable Electronics. Fan W; An Z; Liu F; Gao Z; Zhang M; Fu C; Zhu T; Liu Q; Zhao X Adv Sci (Weinh); 2023 Apr; 10(12):e2206397. PubMed ID: 36799534 [TBL] [Abstract][Full Text] [Related]
12. A Waterproof Flexible Paper-Based Thermoelectric Generator for Humidity and Underwater Environments. Huang Y; Wang W; Chang S; Bao A; Liu Y; Li R; Xiong J Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793405 [TBL] [Abstract][Full Text] [Related]
13. Flexible Hybrid Photo-Thermoelectric Generator Based on Single Thermoelectric Effect for Simultaneously Harvesting Thermal and Radiation Energies. Wen DL; Liu X; Bao JF; Li GK; Feng T; Zhang F; Liu D; Zhang XS ACS Appl Mater Interfaces; 2021 May; 13(18):21401-21410. PubMed ID: 33942604 [TBL] [Abstract][Full Text] [Related]
14. High-Performance Ag Wang Z; Liu Y; Li J; Huang C; Cai K Molecules; 2023 Sep; 28(17):. PubMed ID: 37687227 [TBL] [Abstract][Full Text] [Related]
15. Long-Lasting Heat Dissipation of Flexible Heat Sinks for Wearable Thermoelectric Devices. Ding Q; Sun X; Zhu Z; Yan S; Xia Z; Hou Y; Wang Z ACS Appl Mater Interfaces; 2024 Jun; 16(24):31228-31236. PubMed ID: 38849743 [TBL] [Abstract][Full Text] [Related]
16. High-Performance Thermoelectric Generators for Field Deployments. Kishore RA; Nozariasbmarz A; Poudel B; Priya S ACS Appl Mater Interfaces; 2020 Mar; 12(9):10389-10401. PubMed ID: 32040298 [TBL] [Abstract][Full Text] [Related]
17. Efficiency Enhancement in Ocean Thermal Energy Conversion: A Comparative Study of Heat Exchanger Designs for Bi Chung YC; Wu CI Materials (Basel); 2024 Feb; 17(3):. PubMed ID: 38591609 [TBL] [Abstract][Full Text] [Related]
18. Conformal High-Power-Density Half-Heusler Thermoelectric Modules: A Pathway toward Practical Power Generators. Li W; Nozariasbmarz A; Kishore RA; Kang HB; Dettor C; Zhu H; Poudel B; Priya S ACS Appl Mater Interfaces; 2021 Nov; 13(45):53935-53944. PubMed ID: 34698486 [TBL] [Abstract][Full Text] [Related]
19. Stretchable Nanolayered Thermoelectric Energy Harvester on Complex and Dynamic Surfaces. Yang Y; Hu H; Chen Z; Wang Z; Jiang L; Lu G; Li X; Chen R; Jin J; Kang H; Chen H; Lin S; Xiao S; Zhao H; Xiong R; Shi J; Zhou Q; Xu S; Chen Y Nano Lett; 2020 Jun; 20(6):4445-4453. PubMed ID: 32368921 [TBL] [Abstract][Full Text] [Related]
20. Preparation and Characterization of Screen-Printed Cu Zhao J; Zhao X; Guo R; Zhao Y; Yang C; Zhang L; Liu D; Ren Y Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889652 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]