These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38669138)

  • 1. Protocol for nanoscale thermal mapping of electronic devices using atomic force microscopy with phase change material.
    Cheng Q; Rajauria S; Schreck E; Smith R; Wang N; Reiner J; Dai Q; Bogy D
    STAR Protoc; 2024 Jun; 5(2):103039. PubMed ID: 38669138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocol for live imaging of intracellular nanoscale structures using atomic force microscopy with nanoneedle probes.
    Ichikawa T; Alam MS; Penedo M; Matsumoto K; Fujita S; Miyazawa K; Furusho H; Miyata K; Nakamura C; Fukuma T
    STAR Protoc; 2023 Sep; 4(3):102468. PubMed ID: 37481726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protocol for measuring mechanical properties of live cells using atomic force microscopy.
    Singh SB; Rajput SS; Patil S; Subramanyam D
    STAR Protoc; 2024 Mar; 5(1):102870. PubMed ID: 38329878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography.
    Chu CH; Shiue CD; Cheng HW; Tseng ML; Chiang HP; Mansuripur M; Tsai DP
    Opt Express; 2010 Aug; 18(17):18383-93. PubMed ID: 20721232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precise nanoscale temperature mapping in operational microelectronic devices by use of a phase change material.
    Cheng Q; Rajauria S; Schreck E; Smith R; Wang N; Reiner J; Dai Q; Bogy D
    Sci Rep; 2020 Nov; 10(1):20087. PubMed ID: 33208765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale surface electrical properties of zinc oxide films investigated by conducting atomic force microscopy.
    Yu CF; Chen SH; Xie WJ; Lin YS; Shen CY; Tsai SJ; Sung CW; Ay C
    Microsc Res Tech; 2008 Jan; 71(1):1-4. PubMed ID: 17726692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilization of lipid nanorods onto two-dimensional crystals of protein tamavidin 2 for high-speed atomic force microscopy.
    Noshiro D; Noda NN
    STAR Protoc; 2023 Dec; 4(4):102633. PubMed ID: 38043055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and preparation of
    Jun D; Zhang S; Grzędowski AJ; Mahey A; Beatty JT; Bizzotto D
    STAR Protoc; 2022 Mar; 3(1):101044. PubMed ID: 34977685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale amorphization of GeTe nanowire with conductive atomic force microscope.
    Kim J
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7688-92. PubMed ID: 25942849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring ventral nerve cord stiffness in live flat-dissected Drosophila embryos by atomic force microscopy.
    Karkali K; Jorba I; Navajas D; Martin-Blanco E
    STAR Protoc; 2022 Dec; 3(4):101901. PubMed ID: 36595903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale Visualization of Bacterial Microcompartments Using Atomic Force Microscopy.
    Rodriguez-Ramos J; Faulkner M; Liu LN
    Methods Mol Biol; 2018; 1814():373-383. PubMed ID: 29956244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale thermal analysis of an energetic material.
    King WP; Saxena S; Nelson BA; Weeks BL; Pitchimani R
    Nano Lett; 2006 Sep; 6(9):2145-9. PubMed ID: 16968041
    [No Abstract]   [Full Text] [Related]  

  • 13. Imaging nanoscale spatio-temporal thermal fluctuations.
    Crider PS; Israeloff NE
    Nano Lett; 2006 May; 6(5):887-9. PubMed ID: 16683819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topography imaging with a heated atomic force microscope cantilever in tapping mode.
    Park K; Lee J; Zhang ZM; King WP
    Rev Sci Instrum; 2007 Apr; 78(4):043709. PubMed ID: 17477672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic force microscopy as an imaging tool to study the bio/nonbio complexes.
    Bednarikova Z; Gazova Z; Valle F; Bystrenova E
    J Microsc; 2020 Dec; 280(3):241-251. PubMed ID: 32519330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring external primary cell wall elasticity of seedling roots using atomic force microscopy.
    Kaur H; Teulon JM; Foucher AE; Fenel D; Chen SW; Godon C; Desnos T; Pellequer JL
    STAR Protoc; 2023 May; 4(2):102265. PubMed ID: 37200196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical method for parameterizing the random profile components of nanosurfaces imaged by atomic force microscopy.
    Mirsaidov U; Timashev SF; Polyakov YS; Misurkin PI; Musaev I; Polyakov SV
    Analyst; 2011 Feb; 136(3):570-6. PubMed ID: 21072333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale exploration of microbial surfaces using the atomic force microscope.
    Dufrêne YF
    Future Microbiol; 2006 Dec; 1(4):387-96. PubMed ID: 17661630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of water on the surface molecular mobility of poly(lactide) thin films: an atomic force microscopy study.
    Kikkawa Y; Fujita M; Abe H; Doi Y
    Biomacromolecules; 2004; 5(4):1187-93. PubMed ID: 15244429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale temperature sensing of electronic devices with calibrated scanning thermal microscopy.
    Swoboda T; Wainstein N; Deshmukh S; Köroğlu Ç; Gao X; Lanza M; Hilgenkamp H; Pop E; Yalon E; Muñoz Rojo M
    Nanoscale; 2023 Apr; 15(15):7139-7146. PubMed ID: 37006192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.