These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 38669201)

  • 21. Single-Cell Transcriptomics of Immune Cells: Cell Isolation and cDNA Library Generation for scRNA-Seq.
    Arsenio J
    Methods Mol Biol; 2020; 2184():1-18. PubMed ID: 32808214
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protoplast Isolation for Plant Single-Cell RNA-seq.
    Ren S; Wang Y
    Methods Mol Biol; 2023; 2686():301-305. PubMed ID: 37540365
    [TBL] [Abstract][Full Text] [Related]  

  • 23. scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data.
    Wang H; Zhao J; Zheng C; Su Y
    PLoS Comput Biol; 2022 Dec; 18(12):e1010772. PubMed ID: 36534702
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prokaryotic single-cell RNA sequencing by in situ combinatorial indexing.
    Blattman SB; Jiang W; Oikonomou P; Tavazoie S
    Nat Microbiol; 2020 Oct; 5(10):1192-1201. PubMed ID: 32451472
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Whole-Transcriptome Amplification of Single Cells for Next-Generation Sequencing.
    Korfhage C; Fricke E; Meier A
    Curr Protoc Mol Biol; 2015 Jul; 111():7.20.1-7.20.19. PubMed ID: 26131855
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The promise of single-cell RNA sequencing for kidney disease investigation.
    Wu H; Humphreys BD
    Kidney Int; 2017 Dec; 92(6):1334-1342. PubMed ID: 28893418
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-Cell RNA Sequencing for Plant Research: Insights and Possible Benefits.
    Bawa G; Liu Z; Yu X; Qin A; Sun X
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35562888
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Profiling Transcriptional Heterogeneity with Seq-Well S
    Drake RS; Villanueva MA; Vilme M; Russo DD; Navia A; Love JC; Shalek AK
    Methods Mol Biol; 2023; 2584():57-104. PubMed ID: 36495445
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The use of single-cell RNA-Seq to understand virus-host interactions.
    Cristinelli S; Ciuffi A
    Curr Opin Virol; 2018 Apr; 29():39-50. PubMed ID: 29558678
    [TBL] [Abstract][Full Text] [Related]  

  • 30. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Full-length isoform concatenation sequencing to resolve cancer transcriptome complexity.
    Wijeratne S; Gonzalez MEH; Roach K; Miller KE; Schieffer KM; Fitch JR; Leonard J; White P; Kelly BJ; Cottrell CE; Mardis ER; Wilson RK; Miller AR
    BMC Genomics; 2024 Jan; 25(1):122. PubMed ID: 38287261
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enriching and Characterizing T Cell Repertoires from 3' Barcoded Single-Cell Whole Transcriptome Amplification Products.
    Jivanjee T; Ibrahim S; Nyquist SK; Gatter GJ; Bromley JD; Jaiswal S; Berger B; Behar SM; Love JC; Shalek AK
    Methods Mol Biol; 2022; 2574():159-182. PubMed ID: 36087201
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High Throughput Single Cell RNA Sequencing, Bioinformatics Analysis and Applications.
    Huang X; Liu S; Wu L; Jiang M; Hou Y
    Adv Exp Med Biol; 2018; 1068():33-43. PubMed ID: 29943294
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Missing data and technical variability in single-cell RNA-sequencing experiments.
    Hicks SC; Townes FW; Teng M; Irizarry RA
    Biostatistics; 2018 Oct; 19(4):562-578. PubMed ID: 29121214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Next-Generation Sequencing for MicroRNA Expression Profile.
    Hu Y; Lan W; Miller D
    Methods Mol Biol; 2017; 1617():169-177. PubMed ID: 28540684
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Comprehensive Guide to Potato Transcriptome Assembly.
    Zagorščak M; Petek M
    Methods Mol Biol; 2021; 2354():155-192. PubMed ID: 34448160
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Targeted Multi-omic Analysis Approach Measures Protein Expression and Low-Abundance Transcripts on the Single-Cell Level.
    Mair F; Erickson JR; Voillet V; Simoni Y; Bi T; Tyznik AJ; Martin J; Gottardo R; Newell EW; Prlic M
    Cell Rep; 2020 Apr; 31(1):107499. PubMed ID: 32268080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-cell RNA sequencing in breast cancer: Understanding tumor heterogeneity and paving roads to individualized therapy.
    Ding S; Chen X; Shen K
    Cancer Commun (Lond); 2020 Aug; 40(8):329-344. PubMed ID: 32654419
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of CAGE and RNA-seq transcriptome profiling using clonally amplified and single-molecule next-generation sequencing.
    Kawaji H; Lizio M; Itoh M; Kanamori-Katayama M; Kaiho A; Nishiyori-Sueki H; Shin JW; Kojima-Ishiyama M; Kawano M; Murata M; Ninomiya-Fukuda N; Ishikawa-Kato S; Nagao-Sato S; Noma S; Hayashizaki Y; Forrest AR; Carninci P;
    Genome Res; 2014 Apr; 24(4):708-17. PubMed ID: 24676093
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Data Analysis Pipeline for scRNA-seq Experiments to Study Early Oogenesis.
    Ge W; Zhang T; Zhou Y; Shen W
    Methods Mol Biol; 2024; 2770():203-225. PubMed ID: 38351456
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.