BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38669236)

  • 1. Spatial transcriptome-guided multi-scale framework connects P. aeruginosa metabolic states to oxidative stress biofilm microenvironment.
    Kuper TJ; Islam MM; Peirce-Cottler SM; Papin JA; Ford RM
    PLoS Comput Biol; 2024 Apr; 20(4):e1012031. PubMed ID: 38669236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Glyoxylate Shunt in Oxidative Stress Response.
    Ahn S; Jung J; Jang IA; Madsen EL; Park W
    J Biol Chem; 2016 May; 291(22):11928-38. PubMed ID: 27036942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of mRNA Expression in Pseudomonas aeruginosa Aggregates Reveals Spatial Patterns of Fermentative and Denitrifying Metabolism.
    Livingston J; Spero MA; Lonergan ZR; Newman DK
    Appl Environ Microbiol; 2022 Jun; 88(11):e0043922. PubMed ID: 35586988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conceptual Model of Biofilm Antibiotic Tolerance That Integrates Phenomena of Diffusion, Metabolism, Gene Expression, and Physiology.
    Stewart PS; White B; Boegli L; Hamerly T; Williamson KS; Franklin MJ; Bothner B; James GA; Fisher S; Vital-Lopez FG; Wallqvist A
    J Bacteriol; 2019 Nov; 201(22):. PubMed ID: 31501280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic modeling of a chronic wound biofilm consortium predicts spatial partitioning of bacterial species.
    Phalak P; Chen J; Carlson RP; Henson MA
    BMC Syst Biol; 2016 Sep; 10(1):90. PubMed ID: 27604263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofilm Formation Mechanisms of Pseudomonas aeruginosa Predicted via Genome-Scale Kinetic Models of Bacterial Metabolism.
    Vital-Lopez FG; Reifman J; Wallqvist A
    PLoS Comput Biol; 2015 Oct; 11(10):e1004452. PubMed ID: 26431398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenazines Regulate Nap-Dependent Denitrification in Pseudomonas aeruginosa Biofilms.
    Lin YC; Sekedat MD; Cornell WC; Silva GM; Okegbe C; Price-Whelan A; Vogel C; Dietrich LEP
    J Bacteriol; 2018 May; 200(9):. PubMed ID: 29463605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An updated genome-scale metabolic network reconstruction of Pseudomonas aeruginosa PA14 to characterize mucin-driven shifts in bacterial metabolism.
    Payne DD; Renz A; Dunphy LJ; Lewis T; Dräger A; Papin JA
    NPJ Syst Biol Appl; 2021 Oct; 7(1):37. PubMed ID: 34625561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deletion mutant library for investigation of functional outputs of cyclic diguanylate metabolism in Pseudomonas aeruginosa PA14.
    Ha DG; Richman ME; O'Toole GA
    Appl Environ Microbiol; 2014 Jun; 80(11):3384-93. PubMed ID: 24657857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrate sensing and metabolism modulate motility, biofilm formation, and virulence in Pseudomonas aeruginosa.
    Van Alst NE; Picardo KF; Iglewski BH; Haidaris CG
    Infect Immun; 2007 Aug; 75(8):3780-90. PubMed ID: 17526746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cold atmospheric pressure plasma-antibiotic synergy in
    Maybin JA; Thompson TP; Flynn PB; Skvortsov T; Hickok NJ; Freeman TA; Gilmore BF
    Biofilm; 2023 Dec; 5():100122. PubMed ID: 37214348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of an operon that participates in agmatine metabolism and regulates biofilm formation in Pseudomonas aeruginosa.
    Williams BJ; Du RH; Calcutt MW; Abdolrasulnia R; Christman BW; Blackwell TS
    Mol Microbiol; 2010 Apr; 76(1):104-19. PubMed ID: 20149107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin and Impact of Nitric Oxide in Pseudomonas aeruginosa Biofilms.
    Cutruzzolà F; Frankenberg-Dinkel N
    J Bacteriol; 2016 Jan; 198(1):55-65. PubMed ID: 26260455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole genome characterization and phenanthrene catabolic pathway of a biofilm forming marine bacterium Pseudomonas aeruginosa PFL-P1.
    Mahto KU; Das S
    Ecotoxicol Environ Saf; 2020 Dec; 206():111087. PubMed ID: 32871516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A network biology approach to denitrification in Pseudomonas aeruginosa.
    Arat S; Bullerjahn GS; Laubenbacher R
    PLoS One; 2015; 10(2):e0118235. PubMed ID: 25706405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential Surface Competition and Biofilm Invasion Strategies of Pseudomonas aeruginosa PA14 and PAO1.
    Kasetty S; Katharios-Lanwermeyer S; O'Toole GA; Nadell CD
    J Bacteriol; 2021 Oct; 203(22):e0026521. PubMed ID: 34516283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein Network of the Pseudomonas aeruginosa Denitrification Apparatus.
    Borrero-de Acuña JM; Rohde M; Wissing J; Jänsch L; Schobert M; Molinari G; Timmis KN; Jahn M; Jahn D
    J Bacteriol; 2016 May; 198(9):1401-13. PubMed ID: 26903416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa.
    Barraud N; Hassett DJ; Hwang SH; Rice SA; Kjelleberg S; Webb JS
    J Bacteriol; 2006 Nov; 188(21):7344-53. PubMed ID: 17050922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iDynoMiCS: next-generation individual-based modelling of biofilms.
    Lardon LA; Merkey BV; Martins S; Dötsch A; Picioreanu C; Kreft JU; Smets BF
    Environ Microbiol; 2011 Sep; 13(9):2416-34. PubMed ID: 21410622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron-regulated expression of alginate production, mucoid phenotype, and biofilm formation by Pseudomonas aeruginosa.
    Wiens JR; Vasil AI; Schurr MJ; Vasil ML
    mBio; 2014 Feb; 5(1):e01010-13. PubMed ID: 24496793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.