BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 38669371)

  • 1. The potential roles of exosomes in pathological cardiomyocyte hypertrophy mechanisms and therapy: A review.
    Zhang L; Xie F; Zhang F; Lu B
    Medicine (Baltimore); 2024 Apr; 103(17):e37994. PubMed ID: 38669371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exosomes as New Intercellular Mediators in Development and Therapeutics of Cardiomyocyte Hypertrophy.
    Huang Q; Cai B
    Adv Exp Med Biol; 2017; 998():91-100. PubMed ID: 28936734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular Vesicles in Cardiovascular Theranostics.
    Bei Y; Das S; Rodosthenous RS; Holvoet P; Vanhaverbeke M; Monteiro MC; Monteiro VVS; Radosinska J; Bartekova M; Jansen F; Li Q; Rajasingh J; Xiao J
    Theranostics; 2017; 7(17):4168-4182. PubMed ID: 29158817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy.
    Bang C; Batkai S; Dangwal S; Gupta SK; Foinquinos A; Holzmann A; Just A; Remke J; Zimmer K; Zeug A; Ponimaskin E; Schmiedl A; Yin X; Mayr M; Halder R; Fischer A; Engelhardt S; Wei Y; Schober A; Fiedler J; Thum T
    J Clin Invest; 2014 May; 124(5):2136-46. PubMed ID: 24743145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in Intercellular Communication Mediated by Exosomal ncRNAs in Cardiovascular Disease.
    Zhang X; Sun S; Ren G; Liu W; Chen H
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exosomes derived from cardiac fibroblasts with angiotensin II stimulation provoke hypertrophy and autophagy inhibition in cardiomyocytes.
    Xu ST; Zhang YX; Liu SL; Liu F; Ye JT
    Biochem Biophys Res Commun; 2023 Nov; 682():199-206. PubMed ID: 37826943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes.
    Lyu L; Wang H; Li B; Qin Q; Qi L; Nagarkatti M; Nagarkatti P; Janicki JS; Wang XL; Cui T
    J Mol Cell Cardiol; 2015 Dec; 89(Pt B):268-79. PubMed ID: 26497614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular signaling cross-talk between different cardiac cell populations: an insight into the role of exosomes in the heart diseases and therapy.
    Nguyen BY; Azam T; Wang X
    Am J Physiol Heart Circ Physiol; 2021 Apr; 320(4):H1213-H1234. PubMed ID: 33513083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circulating exosomes in cardiovascular disease: Novel carriers of biological information.
    Liu Q; Piao H; Wang Y; Zheng D; Wang W
    Biomed Pharmacother; 2021 Mar; 135():111148. PubMed ID: 33412387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stargazing microRNA maps a new miR-21 star for cardiac hypertrophy.
    Indolfi C; Curcio A
    J Clin Invest; 2014 May; 124(5):1896-8. PubMed ID: 24743143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exosomes Mediate the Intercellular Communication after Myocardial Infarction.
    Yuan MJ; Maghsoudi T; Wang T
    Int J Med Sci; 2016; 13(2):113-6. PubMed ID: 26941569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in the cargos and functions of exosomes derived from six cardiac cell types: a systematic review.
    Xu MY; Ye ZS; Song XT; Huang RC
    Stem Cell Res Ther; 2019 Jun; 10(1):194. PubMed ID: 31248454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells.
    Wang X; Huang W; Liu G; Cai W; Millard RW; Wang Y; Chang J; Peng T; Fan GC
    J Mol Cell Cardiol; 2014 Sep; 74():139-50. PubMed ID: 24825548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Insights into the Role of Exosomes in the Heart After Myocardial Infarction.
    Li N; Rochette L; Wu Y; Rosenblatt-Velin N
    J Cardiovasc Transl Res; 2019 Feb; 12(1):18-27. PubMed ID: 30173401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exosomes and Exosomal Cargos: A Promising World for Ventricular Remodeling Following Myocardial Infarction.
    Fang J; Zhang Y; Chen D; Zheng Y; Jiang J
    Int J Nanomedicine; 2022; 17():4699-4719. PubMed ID: 36217495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Cell Reconstruction of Progression Trajectory Reveals Intervention Principles in Pathological Cardiac Hypertrophy.
    Ren Z; Yu P; Li D; Li Z; Liao Y; Wang Y; Zhou B; Wang L
    Circulation; 2020 May; 141(21):1704-1719. PubMed ID: 32098504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone marrow mesenchymal stem cell-derived exosomes attenuate cardiac hypertrophy and fibrosis in pressure overload induced remodeling.
    Chen F; Li X; Zhao J; Geng J; Xie J; Xu B
    In Vitro Cell Dev Biol Anim; 2020 Aug; 56(7):567-576. PubMed ID: 32748023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracellular Vesicles and Pathological Cardiac Hypertrophy.
    Gao R; Li X
    Adv Exp Med Biol; 2023; 1418():17-31. PubMed ID: 37603270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exosomal MiR-29a in Cardiomyocytes Induced by Angiotensin II Regulates Cardiac Microvascular Endothelial Cell Proliferation, Migration and Angiogenesis by Targeting VEGFA.
    Li G; Qiu Z; Li C; Zhao R; Zhang Y; Shen C; Liu W; Long X; Zhuang S; Wang Y; Shi B
    Curr Gene Ther; 2022; 22(4):331-341. PubMed ID: 35240953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted deletion of ERK2 in cardiomyocytes attenuates hypertrophic response but provokes pathological stress induced cardiac dysfunction.
    Ulm S; Liu W; Zi M; Tsui H; Chowdhury SK; Endo S; Satoh Y; Prehar S; Wang R; Cartwright EJ; Wang X
    J Mol Cell Cardiol; 2014 Jul; 72(100):104-16. PubMed ID: 24631771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.