These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38669614)

  • 1. Implications and Optimization of Domain Structures in IV-VI High-Entropy Thermoelectric Materials.
    Liu Y; Xie H; Li Z; Dos Reis R; Li J; Hu X; Meza P; AlMalki M; Snyder GJ; Grayson MA; Wolverton C; Kanatzidis MG; Dravid VP
    J Am Chem Soc; 2024 May; 146(18):12620-12635. PubMed ID: 38669614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulating the Configurational Entropy to Improve the Thermoelectric Properties of (GeTe)
    Huang Y; Zhi S; Zhang S; Yao W; Ao W; Zhang C; Liu F; Li J; Hu L
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling the Role of Entropy in Thermoelectrics: Entropy-Stabilized Quintuple Rock Salt PbGeSnCd
    Liu Y; Xie H; Li Z; Zhang Y; Malliakas CD; Al Malki M; Ribet S; Hao S; Pham T; Wang Y; Hu X; Dos Reis R; Snyder GJ; Uher C; Wolverton C; Kanatzidis MG; Dravid VP
    J Am Chem Soc; 2023 Apr; ():. PubMed ID: 37026697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achieving Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in GeTe Alloys via Introducing Cu
    Zhang Q; Ti Z; Zhu Y; Zhang Y; Cao Y; Li S; Wang M; Li D; Zou B; Hou Y; Wang P; Tang G
    ACS Nano; 2021 Dec; 15(12):19345-19356. PubMed ID: 34734696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics.
    Jiang B; Wang W; Liu S; Wang Y; Wang C; Chen Y; Xie L; Huang M; He J
    Science; 2022 Jul; 377(6602):208-213. PubMed ID: 35857539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boosting Thermoelectric Properties of AgBi
    Wu Y; Su X; Yang D; Zhang Q; Tang X
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4185-4191. PubMed ID: 33433997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entropy as a Gene-Like Performance Indicator Promoting Thermoelectric Materials.
    Liu R; Chen H; Zhao K; Qin Y; Jiang B; Zhang T; Sha G; Shi X; Uher C; Zhang W; Chen L
    Adv Mater; 2017 Oct; 29(38):. PubMed ID: 28833741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemistry in Advancing Thermoelectric GeTe Materials.
    Hong M; Chen ZG
    Acc Chem Res; 2022 Nov; 55(21):3178-3190. PubMed ID: 36223096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Band and Phonon Engineering for Thermoelectric Enhancements of Rhombohedral GeTe.
    Liu H; Zhang X; Li J; Bu Z; Meng X; Ang R; Li W
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30756-30762. PubMed ID: 31386339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in Ge
    Zhang Q; Ti Z; Zhang Y; Nan P; Li S; Li D; Liu Q; Tang S; Siddique S; Zhang Y; Ge B; Tang G
    ACS Appl Mater Interfaces; 2023 May; 15(17):21187-21197. PubMed ID: 37083164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Performance GeTe Thermoelectrics in Both Rhombohedral and Cubic Phases.
    Li J; Zhang X; Wang X; Bu Z; Zheng L; Zhou B; Xiong F; Chen Y; Pei Y
    J Am Chem Soc; 2018 Nov; 140(47):16190-16197. PubMed ID: 30360620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Medium Entropy-Enabled High Performance Cubic GeTe Thermoelectrics.
    Zhi S; Li J; Hu L; Li J; Li N; Wu H; Liu F; Zhang C; Ao W; Xie H; Zhao X; Pennycook SJ; Zhu T
    Adv Sci (Weinh); 2021 Jun; 8(12):2100220. PubMed ID: 34194947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Realization of Fine-Tuning the Lattice Thermal Conductivity and Anharmonicity in Layered Semiconductors via Entropy Engineering.
    Chen H; Fu J; Huang S; Qiu Y; Zhao E; Li S; Huang J; Dai P; Fan H; Xiao B
    Adv Mater; 2024 Mar; ():e2400911. PubMed ID: 38552667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic Optimization of the Electronic and Phonon Transports of N-Type Argyrodite Ag
    Yang C; Luo Y; Xia Y; Xu L; Du Z; Han Z; Li X; Cui J
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56329-56336. PubMed ID: 34784168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic Routes to Ultralow Thermal Conductivity and High Thermoelectric Performance.
    Wei PC; Liao CN; Wu HJ; Yang D; He J; Biesold-McGee GV; Liang S; Yen WT; Tang X; Yeh JW; Lin Z; He JH
    Adv Mater; 2020 Mar; 32(12):e1906457. PubMed ID: 32048359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing rare earth-free high entropy oxides with a tungsten bronze structure for thermoelectric applications.
    Jana SS; Maiti T
    Mater Horiz; 2023 May; 10(5):1848-1855. PubMed ID: 36880636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio study of mechanical and thermal properties of GeTe-based and PbSe-based high-entropy chalcogenides.
    Hasan S; Adhikari P; San S; Ching WY
    Sci Rep; 2023 Sep; 13(1):16218. PubMed ID: 37758746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoelectric GeTe with Diverse Degrees of Freedom Having Secured Superhigh Performance.
    Hong M; Zou J; Chen ZG
    Adv Mater; 2019 Apr; 31(14):e1807071. PubMed ID: 30756468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilizing n-Type Cubic GeSe by Entropy-Driven Alloying of AgBiSe
    Roychowdhury S; Ghosh T; Arora R; Waghmare UV; Biswas K
    Angew Chem Int Ed Engl; 2018 Nov; 57(46):15167-15171. PubMed ID: 30225858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vacancy Suppression Induced Synergetic Optimization of Thermoelectric Performance in Sb-Doped GeTe Evidenced by Positron Annihilation Spectroscopy.
    Zhang T; Qi N; Su X; Tang X; Chen Z
    ACS Appl Mater Interfaces; 2023 Aug; 15(34):40665-40675. PubMed ID: 37585556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.