These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 38670341)
1. Engineering the β-galactosidase from Aspergillus oryzae for making lactose-free and no-sugar-added yogurt. Miao M; Li S; Yang S; Yan Q; Xiang Z; Jiang Z J Dairy Sci; 2024 Sep; 107(9):6602-6613. PubMed ID: 38670341 [TBL] [Abstract][Full Text] [Related]
2. Site-directed mutation of β-galactosidase from Streptococcus thermophilus for galactooligosaccharide-enriched yogurt making. Zhao JC; Mu YL; Gu XY; Xu XN; Guo TT; Kong J J Dairy Sci; 2022 Feb; 105(2):940-949. PubMed ID: 34955252 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous hydrolysis and co-fermentation of whey lactose with wheat for ethanol production. Jin Y; Parashar A; Mason B; Bressler DC Bioresour Technol; 2016 Dec; 221():616-624. PubMed ID: 27693727 [TBL] [Abstract][Full Text] [Related]
4. High level production of β-galactosidase exhibiting excellent milk-lactose degradation ability from Aspergillus oryzae by codon and fermentation optimization. Zhao Q; Liu F; Hou Z; Yuan C; Zhu X Appl Biochem Biotechnol; 2014 Mar; 172(6):2787-99. PubMed ID: 24435763 [TBL] [Abstract][Full Text] [Related]
5. Enhanced β-galactosidase production from whey powder by a mutant of the psychrotolerant yeast Guehomyces pullulans 17-1 for hydrolysis of lactose. Xu JL; Zhao J; Wang LF; Sun HY; Song CL; Chi ZM Appl Biochem Biotechnol; 2012 Feb; 166(3):599-611. PubMed ID: 22086565 [TBL] [Abstract][Full Text] [Related]
6. Physicochemical, microbiological, and sensory properties of low-lactose yogurt using Streptococcus thermophilus with high β-galactosidase activity. Li L; Zhou L; Liu X; Gong J; Xiao G J Sci Food Agric; 2023 Dec; 103(15):7374-7380. PubMed ID: 37427487 [TBL] [Abstract][Full Text] [Related]
7. Lactose digestion by yogurt beta-galactosidase: influence of pH and microbial cell integrity. Martini MC; Bollweg GL; Levitt MD; Savaiano DA Am J Clin Nutr; 1987 Feb; 45(2):432-6. PubMed ID: 3101480 [TBL] [Abstract][Full Text] [Related]
8. Viable starter culture, beta-galactosidase activity, and lactose in duodenum after yogurt ingestion in lactase-deficient humans. Pochart P; Dewit O; Desjeux JF; Bourlioux P Am J Clin Nutr; 1989 May; 49(5):828-31. PubMed ID: 2497633 [TBL] [Abstract][Full Text] [Related]
9. Enhanced Properties and Lactose Hydrolysis Efficiencies of Food-Grade β-Galactosidases Immobilized on Various Supports: a Comparative Approach. Katrolia P; Liu X; Li G; Kopparapu NK Appl Biochem Biotechnol; 2019 Jun; 188(2):410-423. PubMed ID: 30484137 [TBL] [Abstract][Full Text] [Related]
10. Properties of porcine and yogurt lactobacilli in relation to lactose intolerance. Burton JP; Tannock GW J Dairy Sci; 1997 Oct; 80(10):2318-24. PubMed ID: 9361203 [TBL] [Abstract][Full Text] [Related]
11. A novel thermostable β-galactosidase from Bacillus coagulans with excellent hydrolysis ability for lactose in whey. Liu P; Xie J; Liu J; Ouyang J J Dairy Sci; 2019 Nov; 102(11):9740-9748. PubMed ID: 31477300 [TBL] [Abstract][Full Text] [Related]
12. Consolidated Bioprocessing in a Dairy Setting─Concurrent Yoghurt Fermentation and Lactose Hydrolysis without Using Lactase Enzymes. Tadesse BT; Zhao G; Kempen P; Solem C J Agric Food Chem; 2022 Sep; 70(37):11623-11630. PubMed ID: 36057098 [No Abstract] [Full Text] [Related]
13. Engineering the optimum pH of β-galactosidase from Aspergillus oryzae for efficient hydrolysis of lactose. Shi X; Wu D; Xu Y; Yu X J Dairy Sci; 2022 Jun; 105(6):4772-4782. PubMed ID: 35450720 [TBL] [Abstract][Full Text] [Related]
14. Factors affecting the ability of a high beta-galactosidase yogurt to enhance lactose absorption. Kotz CM; Furne JK; Savaiano DA; Levitt MD J Dairy Sci; 1994 Dec; 77(12):3538-44. PubMed ID: 7699133 [TBL] [Abstract][Full Text] [Related]
15. Modeling lactose hydrolysis for efficiency and selectivity: Toward the preservation of sialyloligosaccharides in bovine colostrum whey permeate. de Moura Bell JMLN; Aquino LFMC; Liu Y; Cohen JL; Lee H; de Melo Silva VL; Rodrigues MI; Barile D J Dairy Sci; 2016 Aug; 99(8):6157-6163. PubMed ID: 27236766 [TBL] [Abstract][Full Text] [Related]
16. Rational design of the beta-galactosidase from Aspergillus oryzae to improve galactooligosaccharide production. Gao X; Wu J; Wu D Food Chem; 2019 Jul; 286():362-367. PubMed ID: 30827619 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of galacto-oligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose. Vera C; Guerrero C; Conejeros R; Illanes A Enzyme Microb Technol; 2012 Mar; 50(3):188-94. PubMed ID: 22305174 [TBL] [Abstract][Full Text] [Related]
18. Detailed analysis of galactooligosaccharides synthesis with β-galactosidase from Aspergillus oryzae. Urrutia P; Rodriguez-Colinas B; Fernandez-Arrojo L; Ballesteros AO; Wilson L; Illanes A; Plou FJ J Agric Food Chem; 2013 Feb; 61(5):1081-7. PubMed ID: 23330921 [TBL] [Abstract][Full Text] [Related]
19. Lactose-free frozen yogurt: production and characteristics. Skryplonek K; Gomes D; Viegas J; Pereira C; Henriques M Acta Sci Pol Technol Aliment; 2017; 16(2):171-179. PubMed ID: 28703957 [TBL] [Abstract][Full Text] [Related]
20. Immobilization of enzymes on spongy polyvinyl alcohol cryogels: the example of beta-galactosidase from Aspergillus oryzae. Rossi A; Morana A; Lernia ID; Di tombrino A; De Rosa M Ital J Biochem; 1999 Jun; 48(2):91-7. PubMed ID: 10434188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]