These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 38670752)
1. Thermosensitive composite based on agarose and chitosan saturated with carbon dioxide. Preliminary study of requirements for production of new CSAG bioink. Banach-Kopeć A; Mania S; Tylingo R; Wawrzynowicz A; Pawłowska M; Czerwiec K; Deptuła M; Pikuła M Carbohydr Polym; 2024 Jul; 336():122120. PubMed ID: 38670752 [TBL] [Abstract][Full Text] [Related]
2. From Bioink to Tissue: Exploring Chitosan-Agarose Composite in the Context of Printability and Cellular Behaviour. Mania S; Banach-Kopeć A; Maciejewska N; Czerwiec K; Słonimska P; Deptuła M; Baczyński-Keller J; Pikuła M; Sachadyn P; Tylingo R Molecules; 2024 Sep; 29(19):. PubMed ID: 39407579 [TBL] [Abstract][Full Text] [Related]
3. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks. Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047 [TBL] [Abstract][Full Text] [Related]
4. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications. Janarthanan G; Tran HN; Cha E; Lee C; Das D; Noh I Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111008. PubMed ID: 32487412 [TBL] [Abstract][Full Text] [Related]
5. Porous Agarose-Based Semi-IPN Hydrogels: Characterization and Cell Affinity Studies. Vardar E; Vert M; Coudane J; Hasirci V; Hasirci N J Biomater Sci Polym Ed; 2012; 23(18):2273-86. PubMed ID: 22182333 [TBL] [Abstract][Full Text] [Related]
6. A novel method of creating thermoplastic chitosan blends to produce cell scaffolds by FDM additive manufacturing. Tylingo R; Kempa P; Banach-Kopeć A; Mania S Carbohydr Polym; 2022 Mar; 280():119028. PubMed ID: 35027130 [TBL] [Abstract][Full Text] [Related]
7. Development of agarose-gelatin bioinks for extrusion-based bioprinting and cell encapsulation. Dravid A; McCaughey-Chapman A; Raos B; O'Carroll SJ; Connor B; Svirskis D Biomed Mater; 2022 Jun; 17(5):. PubMed ID: 35654031 [TBL] [Abstract][Full Text] [Related]
8. Novel biomimetic thermosensitive β-tricalcium phosphate/chitosan-based hydrogels for bone tissue engineering. Dessì M; Borzacchiello A; Mohamed TH; Abdel-Fattah WI; Ambrosio L J Biomed Mater Res A; 2013 Oct; 101(10):2984-93. PubMed ID: 23873836 [TBL] [Abstract][Full Text] [Related]
9. 3D bioprinting of a cell-laden antibacterial polysaccharide hydrogel composite. Rastin H; Ramezanpour M; Hassan K; Mazinani A; Tung TT; Vreugde S; Losic D Carbohydr Polym; 2021 Jul; 264():117989. PubMed ID: 33910727 [TBL] [Abstract][Full Text] [Related]
10. Nanoarchitectonics and Biological Properties of Nanocomposite Thermosensitive Chitosan Hydrogels Obtained with the Use of Uridine 5'-Monophosphate Disodium Salt. Pieklarz K; Galita G; Majsterek I; Owczarz P; Modrzejewska Z Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892176 [TBL] [Abstract][Full Text] [Related]
11. Highly gallol-substituted, rapidly self-crosslinkable, and robust chitosan hydrogel for 3D bioprinting. Gwak MA; Lee SJ; Lee D; Park SA; Park WH Int J Biol Macromol; 2023 Feb; 227():493-504. PubMed ID: 36535357 [TBL] [Abstract][Full Text] [Related]
12. Biofabrication of skin tissue constructs using alginate, gelatin and diethylaminoethyl cellulose bioink. Somasekharan LT; Raju R; Kumar S; Geevarghese R; Nair RP; Kasoju N; Bhatt A Int J Biol Macromol; 2021 Oct; 189():398-409. PubMed ID: 34419550 [TBL] [Abstract][Full Text] [Related]
13. Preliminary investigation on a new natural based poly(gamma-glutamic acid)/Chitosan bioink. Pisani S; Dorati R; Scocozza F; Mariotti C; Chiesa E; Bruni G; Genta I; Auricchio F; Conti M; Conti B J Biomed Mater Res B Appl Biomater; 2020 Oct; 108(7):2718-2732. PubMed ID: 32159925 [TBL] [Abstract][Full Text] [Related]
14. A multi-functional double cross-linked chitosan hydrogel with tunable mechanical and antibacterial properties for skin wound dressing. Liu F; Wang L; Zhai X; Ji S; Ye J; Zhu Z; Teng C; Dong W; Wei W Carbohydr Polym; 2023 Dec; 322():121344. PubMed ID: 37839832 [TBL] [Abstract][Full Text] [Related]
15. Tannic acid-reinforced methacrylated chitosan/methacrylated silk fibroin hydrogels with multifunctionality for accelerating wound healing. He X; Liu X; Yang J; Du H; Chai N; Sha Z; Geng M; Zhou X; He C Carbohydr Polym; 2020 Nov; 247():116689. PubMed ID: 32829817 [TBL] [Abstract][Full Text] [Related]
16. Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties. Zou W; Chen Y; Zhang X; Li J; Sun L; Gui Z; Du B; Chen S Carbohydr Polym; 2018 Dec; 202():246-257. PubMed ID: 30286998 [TBL] [Abstract][Full Text] [Related]
17. Development of highly-reproducible hydrogel based bioink for regeneration of skin-tissues via 3-D bioprinting technology. Ullah F; Javed F; Mushtaq I; Rahman LU; Ahmed N; Din IU; Alotaibi MA; Alharthi AI; Ahmad A; Bakht MA; Khan F; Tasleem S Int J Biol Macromol; 2023 Mar; 230():123131. PubMed ID: 36610570 [TBL] [Abstract][Full Text] [Related]