BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 38671020)

  • 1. Programming viscoelastic properties in a complexation gel composite by utilizing entropy-driven topologically frustrated dynamical state.
    Wang GK; Yang YM; Jia D
    Nat Commun; 2024 Apr; 15(1):3569. PubMed ID: 38671020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyzwitterions as a Versatile Building Block of Tough Hydrogels: From Polyelectrolyte Complex Gels to Double-Network Gels.
    Yin H; King DR; Sun TL; Saruwatari Y; Nakajima T; Kurokawa T; Gong JP
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):50068-50076. PubMed ID: 33085900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topologically frustrated dynamics of crowded charged macromolecules in charged hydrogels.
    Jia D; Muthukumar M
    Nat Commun; 2018 Jun; 9(1):2248. PubMed ID: 29884894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printing of a tough double-network hydrogel and its use as a scaffold to construct a tissue-like hydrogel composite.
    Du C; Hu J; Wu X; Shi H; Yu HC; Qian J; Yin J; Gao C; Wu ZL; Zheng Q
    J Mater Chem B; 2022 Jan; 10(3):468-476. PubMed ID: 34982091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manufacture of Bilayered Composite Hydrogels with Strong, Elastic, and Tough Properties for Osteochondral Repair Applications.
    Yao H; Wang C; Zhang Y; Wan Y; Min Q
    Biomimetics (Basel); 2023 May; 8(2):. PubMed ID: 37218789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing viscoelastic mechanical properties of highly compliant polymers and biological tissues using impact indentation.
    Mijailovic AS; Qing B; Fortunato D; Van Vliet KJ
    Acta Biomater; 2018 Apr; 71():388-397. PubMed ID: 29477455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composite hydrogels for nucleus pulposus tissue engineering.
    Strange DG; Oyen ML
    J Mech Behav Biomed Mater; 2012 Jul; 11():16-26. PubMed ID: 22658151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring the dependency between rigidity and water uptake of a microfabricated hydrogel with the conformational rigidity of a polymer cross-linker.
    Schmidt JJ; Jeong JH; Chan V; Cha C; Baek K; Lai MH; Bashir R; Kong H
    Biomacromolecules; 2013 May; 14(5):1361-9. PubMed ID: 23517437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering hydrogel viscoelasticity.
    Cacopardo L; Guazzelli N; Nossa R; Mattei G; Ahluwalia A
    J Mech Behav Biomed Mater; 2019 Jan; 89():162-167. PubMed ID: 30286375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic hydrogel with tunable mechanical properties for vitreous substitutes.
    Santhanam S; Liang J; Struckhoff J; Hamilton PD; Ravi N
    Acta Biomater; 2016 Oct; 43():327-337. PubMed ID: 27481290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatically Driven Topological Freezing of Polymer Diffusion at Intermediate Confinements.
    Jia D; Muthukumar M
    Phys Rev Lett; 2021 Feb; 126(5):057802. PubMed ID: 33605762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entropic barrier of topologically immobilized DNA in hydrogels.
    Chen K; Muthukumar M
    Proc Natl Acad Sci U S A; 2021 Jul; 118(28):. PubMed ID: 34260390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring supramolecular guest-host hydrogel viscoelasticity with covalent fibrinogen double networks.
    Loebel C; Ayoub A; Galarraga JH; Kossover O; Simaan-Yameen H; Seliktar D; Burdick JA
    J Mater Chem B; 2019 Mar; 7(10):1753-1760. PubMed ID: 32254917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tensiometric and Phase Domain Behavior of Lung Surfactant on Mucus-like Viscoelastic Hydrogels.
    Schenck DM; Fiegel J
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):5917-28. PubMed ID: 26894883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composite hydrogel of chitosan-poly(hydroxybutyrate-co-valerate) with chondroitin sulfate nanoparticles for nucleus pulposus tissue engineering.
    Nair MB; Baranwal G; Vijayan P; Keyan KS; Jayakumar R
    Colloids Surf B Biointerfaces; 2015 Dec; 136():84-92. PubMed ID: 26363270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Injectable Amorphous Chitin-Agarose Composite Hydrogels for Biomedical Applications.
    Priya MV; Kumar RA; Sivashanmugam A; Nair SV; Jayakumar R
    J Funct Biomater; 2015 Aug; 6(3):849-62. PubMed ID: 26308065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering viscoelastic mismatch for temporal morphing of tough supramolecular hydrogels.
    Hao XP; Zhang CW; Hong W; Meng M; Hou LX; Du M; Zheng Q; Wu ZL
    Mater Horiz; 2023 Feb; 10(2):432-442. PubMed ID: 36606414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulating the Viscoelastic Properties of Covalently Crosslinked Protein Hydrogels.
    Boni R; Regan L
    Gels; 2023 Jun; 9(6):. PubMed ID: 37367151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong fiber-reinforced hydrogel.
    Agrawal A; Rahbar N; Calvert PD
    Acta Biomater; 2013 Feb; 9(2):5313-8. PubMed ID: 23107796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation.
    Charrier EE; Pogoda K; Wells RG; Janmey PA
    Nat Commun; 2018 Jan; 9(1):449. PubMed ID: 29386514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.