These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 38671189)

  • 1. Halogen-powered static conversion chemistry.
    Li X; Xu W; Zhi C
    Nat Rev Chem; 2024 May; 8(5):359-375. PubMed ID: 38671189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Halogen chemistry of solid electrolytes in all-solid-state batteries.
    He B; Zhang F; Xin Y; Xu C; Hu X; Wu X; Yang Y; Tian H
    Nat Rev Chem; 2023 Dec; 7(12):826-842. PubMed ID: 37833403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Halide-Based Materials and Chemistry for Rechargeable Batteries.
    Zhao X; Zhao-Karger Z; Fichtner M; Shen X
    Angew Chem Int Ed Engl; 2020 Apr; 59(15):5902-5949. PubMed ID: 31359549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Six-Electron-Redox Iodine Electrodes for High-Energy Aqueous Batteries.
    Bi S; Wang H; Zhang Y; Yang M; Li Q; Tian J; Niu Z
    Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202312982. PubMed ID: 37861096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development, Essence, and Application of a Metal-Catalysis Battery.
    Feng Y; Yan S; Zhang X; Wang Y
    Acc Chem Res; 2023 Jun; 56(12):1645-1655. PubMed ID: 37282625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward Practical Multivalent Ion Batteries with Quinone-Based Organic Cathodes.
    Hwang I; Kim DU; Choi JW; Yoo DJ
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37970790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage.
    Zhang C; Zhang L; Yu G
    Acc Chem Res; 2020 Aug; 53(8):1648-1659. PubMed ID: 32672933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox reactions of halogens for reversible electrochemical energy storage.
    Chen S; Zhang J
    Dalton Trans; 2020 Aug; 49(29):9929-9934. PubMed ID: 32638802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Zinc-Dual-Halogen Battery with a Molten Hydrate Electrolyte.
    Liu H; Chen CY; Yang H; Wang Y; Zou L; Wei YS; Jiang J; Guo J; Shi W; Xu Q; Cheng P
    Adv Mater; 2020 Nov; 32(46):e2004553. PubMed ID: 33048428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Versatile Redox-Active Organic Materials for Rechargeable Energy Storage.
    Kwon G; Ko Y; Kim Y; Kim K; Kang K
    Acc Chem Res; 2021 Dec; 54(23):4423-4433. PubMed ID: 34793126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opportunities and Challenges for Organic Electrodes in Electrochemical Energy Storage.
    Poizot P; Gaubicher J; Renault S; Dubois L; Liang Y; Yao Y
    Chem Rev; 2020 Jul; 120(14):6490-6557. PubMed ID: 32207919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible Electrochemical Energy Storage Based on Zinc-Halide Chemistry.
    Ejigu A; Le Fevre LW; Dryfe RAW
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14112-14121. PubMed ID: 33724772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical Reduction of Halogenated Alkanes and Alkenes Using Activated Carbon-Based Cathodes.
    King JF; Mitch WA
    Environ Sci Technol; 2022 Dec; 56(24):17965-17976. PubMed ID: 36459429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MXene chemistry, electrochemistry and energy storage applications.
    Li X; Huang Z; Shuck CE; Liang G; Gogotsi Y; Zhi C
    Nat Rev Chem; 2022 Jun; 6(6):389-404. PubMed ID: 37117426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.
    Zhao Y; Ding Y; Li Y; Peng L; Byon HR; Goodenough JB; Yu G
    Chem Soc Rev; 2015 Nov; 44(22):7968-96. PubMed ID: 26265165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perovskite Cathodes for Aqueous and Organic Iodine Batteries Operating Under One and Two Electrons Redox Modes.
    Li X; Wang S; Zhang D; Li P; Chen Z; Chen A; Huang Z; Liang G; Rogach AL; Zhi C
    Adv Mater; 2024 Jan; 36(4):e2304557. PubMed ID: 37587645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Electron Transfer-Based High-Capacity Organic Lithium-Iodine (Chlorine) Batteries.
    Li X; Wang Y; Lu J; Li S; Li P; Huang Z; Liang G; He H; Zhi C
    Angew Chem Int Ed Engl; 2023 Oct; 62(42):e202310168. PubMed ID: 37656770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cathode materials for halide-based aqueous redox flow batteries: recent progress and future perspectives.
    Lu G; Wang Z; Zhang S; Ding J; Luo J; Liu X
    Nanoscale; 2023 Mar; 15(9):4250-4260. PubMed ID: 36756795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.