These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38671816)

  • 1. Tensile Yield Strain of Human Cortical Bone from the Femoral Diaphysis Is Constant among Healthy Adults and across the Anatomical Quadrants.
    Baleani M; Erani P; Acciaioli A; Schileo E
    Bioengineering (Basel); 2024 Apr; 11(4):. PubMed ID: 38671816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue.
    Bayraktar HH; Morgan EF; Niebur GL; Morris GE; Wong EK; Keaveny TM
    J Biomech; 2004 Jan; 37(1):27-35. PubMed ID: 14672565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective mechanical properties of diaphyseal cortical bone in the canine femur.
    Autefage A; Palierne S; Charron C; Swider P
    Vet J; 2012 Nov; 194(2):202-9. PubMed ID: 22595311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep-Freezing Temperatures During Irradiation Preserves the Compressive Strength of Human Cortical Bone Allografts: A Cadaver Study.
    Yang Harmony TC; Yusof N; Ramalingam S; Baharin R; Syahrom A; Mansor A
    Clin Orthop Relat Res; 2022 Feb; 480(2):407-418. PubMed ID: 34491235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is the 0.2%-Strain-Offset Approach Appropriate for Calculating the Yield Stress of Cortical Bone?
    Zhang G; Luo J; Zheng G; Bai Z; Cao L; Mao H
    Ann Biomed Eng; 2021 Jul; 49(7):1747-1760. PubMed ID: 33479788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution during growth of the mechanical properties of the cortical bone in equine cannon-bones.
    Bigot G; Bouzidi A; Rumelhart C; Martin-Rosset W
    Med Eng Phys; 1996 Jan; 18(1):79-87. PubMed ID: 8771043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Residual stress around the cortical surface in bovine femoral diaphysis.
    Yamada S; Tadano S
    J Biomech Eng; 2010 Apr; 132(4):044503. PubMed ID: 20387976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of sex, age, and two loading rates on the tensile material properties of human rib cortical bone.
    Katzenberger MJ; Albert DL; Agnew AM; Kemper AR
    J Mech Behav Biomed Mater; 2020 Feb; 102():103410. PubMed ID: 31655338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensively characterizing heterogeneous and transversely isotropic properties of femur cortical bones.
    Zhang G; Jia X; Li Z; Wang Q; Gu H; Liu Y; Bai Z; Mao H
    J Mech Behav Biomed Mater; 2024 Mar; 151():106387. PubMed ID: 38246092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure.
    Zioupos P; Hansen U; Currey JD
    J Biomech; 2008 Oct; 41(14):2932-9. PubMed ID: 18786670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tensile behavior of cortical bone: dependence of organic matrix material properties on bone mineral content.
    Kotha SP; Guzelsu N
    J Biomech; 2007; 40(1):36-45. PubMed ID: 16434048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An experimental procedure to perform mechanical characterization of small-sized bone specimens from thin femoral cortical wall.
    Gastaldi D; Baleani M; Fognani R; Airaghi F; Bonanni L; Vena P
    J Mech Behav Biomed Mater; 2020 Dec; 112():104046. PubMed ID: 32911224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced cortical bone thickness increases stress and strain in the female femoral diaphysis analyzed by a CT-based finite element method: Implications for the anatomical background of fatigue fracture of the femur.
    Endo D; Ogami-Takamura K; Imamura T; Saiki K; Murai K; Okamoto K; Tsurumoto T
    Bone Rep; 2020 Dec; 13():100733. PubMed ID: 33294500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apparent Young's modulus of human radius using inverse finite-element method.
    Bosisio MR; Talmant M; Skalli W; Laugier P; Mitton D
    J Biomech; 2007; 40(9):2022-8. PubMed ID: 17097663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties of metaphyseal bone in the proximal femur.
    Lotz JC; Gerhart TN; Hayes WC
    J Biomech; 1991; 24(5):317-29. PubMed ID: 2050708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dependence of yield strain of human trabecular bone on anatomic site.
    Morgan EF; Keaveny TM
    J Biomech; 2001 May; 34(5):569-77. PubMed ID: 11311697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial Variation in Young Ovine Cortical Bone Properties.
    Manandhar S; Song H; Moshage SG; Craggette J; Polk JD; Kersh ME
    J Biomech Eng; 2023 Jun; 145(6):. PubMed ID: 36594645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of fiber orientation and strain rate on the nonlinear uniaxial tensile material properties of tendon.
    Lynch HA; Johannessen W; Wu JP; Jawa A; Elliott DM
    J Biomech Eng; 2003 Oct; 125(5):726-31. PubMed ID: 14618932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elastic modulus and strength of emu cortical bone.
    Reed KL; Brown TD
    Iowa Orthop J; 2001; 21():53-7. PubMed ID: 11813952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elastic moduli, yield stress, and ultimate stress of cancellous bone in the canine proximal femur.
    Vahey JW; Lewis JL; Vanderby R
    J Biomech; 1987; 20(1):29-33. PubMed ID: 3558426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.