These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38671995)

  • 41. An adversarial discriminative temporal convolutional network for EEG-based cross-domain emotion recognition.
    He Z; Zhong Y; Pan J
    Comput Biol Med; 2022 Feb; 141():105048. PubMed ID: 34838262
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Temporal relative transformer encoding cooperating with channel attention for EEG emotion analysis.
    Peng G; Zhao K; Zhang H; Xu D; Kong X
    Comput Biol Med; 2023 Mar; 154():106537. PubMed ID: 36682180
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Emotion recognition from multichannel EEG signals using K-nearest neighbor classification.
    Li M; Xu H; Liu X; Lu S
    Technol Health Care; 2018; 26(S1):509-519. PubMed ID: 29758974
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An enhanced Coati Optimization Algorithm for global optimization and feature selection in EEG emotion recognition.
    Houssein EH; Hammad A; Emam MM; Ali AA
    Comput Biol Med; 2024 May; 173():108329. PubMed ID: 38513391
    [TBL] [Abstract][Full Text] [Related]  

  • 45. EEG-based emotion recognition with deep convolutional neural networks.
    Ozdemir MA; Degirmenci M; Izci E; Akan A
    Biomed Tech (Berl); 2020 Aug; ():. PubMed ID: 32845859
    [TBL] [Abstract][Full Text] [Related]  

  • 46. EEG-based emotion recognition using a temporal-difference minimizing neural network.
    Ju X; Li M; Tian W; Hu D
    Cogn Neurodyn; 2024 Apr; 18(2):405-416. PubMed ID: 38699602
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Accelerating 3D Convolutional Neural Network with Channel Bottleneck Module for EEG-Based Emotion Recognition.
    Kim S; Kim TS; Lee WH
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146160
    [TBL] [Abstract][Full Text] [Related]  

  • 48. SCC-MPGCN: self-attention coherence clustering based on multi-pooling graph convolutional network for EEG emotion recognition.
    Zhao H; Liu J; Shen Z; Yan J
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35354132
    [TBL] [Abstract][Full Text] [Related]  

  • 49. TSANN-TG: Temporal-Spatial Attention Neural Networks with Task-Specific Graph for EEG Emotion Recognition.
    Jiang C; Dai Y; Ding Y; Chen X; Li Y; Tang Y
    Brain Sci; 2024 May; 14(5):. PubMed ID: 38790494
    [TBL] [Abstract][Full Text] [Related]  

  • 50. ERTNet: an interpretable transformer-based framework for EEG emotion recognition.
    Liu R; Chao Y; Ma X; Sha X; Sun L; Li S; Chang S
    Front Neurosci; 2024; 18():1320645. PubMed ID: 38298914
    [TBL] [Abstract][Full Text] [Related]  

  • 51. EEG-Based Emotion Recognition Using Quadratic Time-Frequency Distribution.
    Alazrai R; Homoud R; Alwanni H; Daoud MI
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30127311
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multi-method Fusion of Cross-Subject Emotion Recognition Based on High-Dimensional EEG Features.
    Yang F; Zhao X; Jiang W; Gao P; Liu G
    Front Comput Neurosci; 2019; 13():53. PubMed ID: 31507396
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Granger-Causality-Based Multi-Frequency Band EEG Graph Feature Extraction and Fusion for Emotion Recognition.
    Zhang J; Zhang X; Chen G; Zhao Q
    Brain Sci; 2022 Dec; 12(12):. PubMed ID: 36552109
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bi-CapsNet: A Binary Capsule Network for EEG-based Emotion Recognition.
    Liu Y; Wei Y; Li C; Cheng J; Song R; Chen X
    IEEE J Biomed Health Inform; 2022 Dec; PP():. PubMed ID: 37015506
    [TBL] [Abstract][Full Text] [Related]  

  • 55. STSNet: a novel spatio-temporal-spectral network for subject-independent EEG-based emotion recognition.
    Li R; Ren C; Zhang S; Yang Y; Zhao Q; Hou K; Yuan W; Zhang X; Hu B
    Health Inf Sci Syst; 2023 Dec; 11(1):25. PubMed ID: 37265664
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dual-Threshold-Based Microstate Analysis on Characterizing Temporal Dynamics of Affective Process and Emotion Recognition From EEG Signals.
    Chen J; Li H; Ma L; Bo H; Soong F; Shi Y
    Front Neurosci; 2021; 15():689791. PubMed ID: 34335165
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhancing BCI-Based Emotion Recognition Using an Improved Particle Swarm Optimization for Feature Selection.
    Li Z; Qiu L; Li R; He Z; Xiao J; Liang Y; Wang F; Pan J
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32471047
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multi-Feature Input Deep Forest for EEG-Based Emotion Recognition.
    Fang Y; Yang H; Zhang X; Liu H; Tao B
    Front Neurorobot; 2020; 14():617531. PubMed ID: 33505263
    [TBL] [Abstract][Full Text] [Related]  

  • 59. EEG-Based Emotion Classification Using a Deep Neural Network and Sparse Autoencoder.
    Liu J; Wu G; Luo Y; Qiu S; Yang S; Li W; Bi Y
    Front Syst Neurosci; 2020; 14():43. PubMed ID: 32982703
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multi-scale 3D-CRU for EEG emotion recognition.
    Dong H; Zhou J; Fan C; Zheng W; Tao L; Kwan HK
    Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38670076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.