These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 38672024)

  • 1. A Data Augmentation Method for Motor Imagery EEG Signals Based on DCGAN-GP Network.
    Du X; Ding X; Xi M; Lv Y; Qiu S; Liu Q
    Brain Sci; 2024 Apr; 14(4):. PubMed ID: 38672024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data Augmentation for Motor Imagery Signal Classification Based on a Hybrid Neural Network.
    Zhang K; Xu G; Han Z; Ma K; Zheng X; Chen L; Duan N; Zhang S
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32796607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Convolution Generative Adversarial Network-Based Electroencephalogram Data Augmentation for Post-Stroke Rehabilitation with Motor Imagery.
    Xu F; Dong G; Li J; Yang Q; Wang L; Zhao Y; Yan Y; Zhao J; Pang S; Guo D; Zhang Y; Leng J
    Int J Neural Syst; 2022 Sep; 32(9):2250039. PubMed ID: 35881016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bidirectional feature pyramid attention-based temporal convolutional network model for motor imagery electroencephalogram classification.
    Xie X; Chen L; Qin S; Zha F; Fan X
    Front Neurorobot; 2024; 18():1343249. PubMed ID: 38352723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generative Adversarial Networks-Based Data Augmentation for Brain-Computer Interface.
    Fahimi F; Dosen S; Ang KK; Mrachacz-Kersting N; Guan C
    IEEE Trans Neural Netw Learn Syst; 2021 Sep; 32(9):4039-4051. PubMed ID: 32841127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward calibration-free motor imagery brain-computer interfaces: a VGG-based convolutional neural network and WGAN approach.
    Habashy AG; Azab AM; Eldawlatly S; Aly GM
    J Neural Eng; 2024 Jul; ():. PubMed ID: 39029497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing robustness to adversarial attacks in attention-based networks: Case of EEG-based motor imagery classification.
    Sayah Ben Aissa NEH; Korichi A; Lakas A; Kerrache CA; Calafate CT
    SLAS Technol; 2024 May; ():100142. PubMed ID: 38723895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attention-Based DSC-ConvLSTM for Multiclass Motor Imagery Classification.
    Li L; Sun N
    Comput Intell Neurosci; 2022; 2022():8187009. PubMed ID: 35571721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MI-DABAN: A dual-attention-based adversarial network for motor imagery classification.
    Li H; Zhang D; Xie J
    Comput Biol Med; 2023 Jan; 152():106420. PubMed ID: 36529022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEG-inception: an accurate and robust end-to-end neural network for EEG-based motor imagery classification.
    Zhang C; Kim YK; Eskandarian A
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33691299
    [No Abstract]   [Full Text] [Related]  

  • 11. Classification of Motor Imagery EEG Signals Based on Data Augmentation and Convolutional Neural Networks.
    Xie Y; Oniga S
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-attention-based convolutional neural network and time-frequency common spatial pattern for enhanced motor imagery classification.
    Zhang R; Liu G; Wen Y; Zhou W
    J Neurosci Methods; 2023 Oct; 398():109953. PubMed ID: 37611877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroencephalographic Signal Data Augmentation Based on Improved Generative Adversarial Network.
    Du X; Wang X; Zhu L; Ding X; Lv Y; Qiu S; Liu Q
    Brain Sci; 2024 Apr; 14(4):. PubMed ID: 38672017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEGGAN-Net: enhancing EEG signal classification through data augmentation.
    Song J; Zhai Q; Wang C; Liu J
    Front Hum Neurosci; 2024; 18():1430086. PubMed ID: 39010893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Staging study of single-channel sleep EEG signals based on data augmentation.
    Ling H; Luyuan Y; Xinxin L; Bingliang D
    Front Public Health; 2022; 10():1038742. PubMed ID: 36504972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals.
    Khademi Z; Ebrahimi F; Kordy HM
    Comput Biol Med; 2022 Apr; 143():105288. PubMed ID: 35168083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generative adversarial network based synthetic data training model for lightweight convolutional neural networks.
    Rather IH; Kumar S
    Multimed Tools Appl; 2023 May; ():1-23. PubMed ID: 37362646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stockwell transform and semi-supervised feature selection from deep features for classification of BCI signals.
    Salimpour S; Kalbkhani H; Seyyedi S; Solouk V
    Sci Rep; 2022 Jul; 12(1):11773. PubMed ID: 35817814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Posthoc Interpretability of Neural Responses by Grouping Subject Motor Imagery Skills Using CNN-Based Connectivity.
    Collazos-Huertas DF; Álvarez-Meza AM; Cárdenas-Peña DA; Castaño-Duque GA; Castellanos-Domínguez CG
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor Imagery EEG Classification Using Capsule Networks.
    Ha KW; Jeong JW
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31252557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.