BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 38672495)

  • 21. Antiviral activities and applications of ribosomally synthesized and post-translationally modified peptides (RiPPs).
    Fu Y; Jaarsma AH; Kuipers OP
    Cell Mol Life Sci; 2021 Apr; 78(8):3921-3940. PubMed ID: 33532865
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ribosomally synthesized and post-translationally modified peptide natural products: new insights into the role of leader and core peptides during biosynthesis.
    Yang X; van der Donk WA
    Chemistry; 2013 Jun; 19(24):7662-77. PubMed ID: 23666908
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expanded genetic code for the engineering of ribosomally synthetized and post-translationally modified peptide natural products (RiPPs).
    Budisa N
    Curr Opin Biotechnol; 2013 Aug; 24(4):591-8. PubMed ID: 23537814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent advances in the biosynthesis of RiPPs from multicore-containing precursor peptides.
    Rubin GM; Ding Y
    J Ind Microbiol Biotechnol; 2020 Oct; 47(9-10):659-674. PubMed ID: 32617877
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining.
    Skinnider MA; Johnston CW; Edgar RE; Dejong CA; Merwin NJ; Rees PN; Magarvey NA
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):E6343-E6351. PubMed ID: 27698135
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ribosomally synthesized and post-translationally modified peptide natural product discovery in the genomic era.
    Hetrick KJ; van der Donk WA
    Curr Opin Chem Biol; 2017 Jun; 38():36-44. PubMed ID: 28260651
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of protein-protein interactions in the biosynthesis of ribosomally synthesized and post-translationally modified peptides.
    Sikandar A; Koehnke J
    Nat Prod Rep; 2019 Nov; 36(11):1576-1588. PubMed ID: 30920567
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A scalable platform to discover antimicrobials of ribosomal origin.
    Ayikpoe RS; Shi C; Battiste AJ; Eslami SM; Ramesh S; Simon MA; Bothwell IR; Lee H; Rice AJ; Ren H; Tian Q; Harris LA; Sarksian R; Zhu L; Frerk AM; Precord TW; van der Donk WA; Mitchell DA; Zhao H
    Nat Commun; 2022 Oct; 13(1):6135. PubMed ID: 36253467
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of chemical synthesis in developing RiPP antibiotics.
    Rowe SM; Spring DR
    Chem Soc Rev; 2021 Apr; 50(7):4245-4258. PubMed ID: 33635302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. P450-Modified Multicyclic Cyclophane-Containing Ribosomally Synthesized and Post-Translationally Modified Peptides.
    Liu CL; Wang ZJ; Shi J; Yan ZY; Zhang GD; Jiao RH; Tan RX; Ge HM
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202314046. PubMed ID: 38072825
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RiPPMiner-Genome: A Web Resource for Automated Prediction of Crosslinked Chemical Structures of RiPPs by Genome Mining.
    Agrawal P; Amir S; Deepak ; Barua D; Mohanty D
    J Mol Biol; 2021 May; 433(11):166887. PubMed ID: 33972022
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Radical S-Adenosylmethionine Enzymes Involved in RiPP Biosynthesis.
    Mahanta N; Hudson GA; Mitchell DA
    Biochemistry; 2017 Oct; 56(40):5229-5244. PubMed ID: 28895719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Omics-based strategies to discover novel classes of RiPP natural products.
    Kloosterman AM; Medema MH; van Wezel GP
    Curr Opin Biotechnol; 2021 Jun; 69():60-67. PubMed ID: 33383297
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Marine Bacterial Ribosomal Peptides: Recent Genomics- and Synthetic Biology-Based Discoveries and Biosynthetic Studies.
    Sukmarini L
    Mar Drugs; 2022 Aug; 20(9):. PubMed ID: 36135733
    [TBL] [Abstract][Full Text] [Related]  

  • 35. P450-Modified Ribosomally Synthesized Peptides with Aromatic Cross-Links.
    Hu YL; Yin FZ; Shi J; Ma SY; Wang ZR; Tan RX; Jiao RH; Ge HM
    J Am Chem Soc; 2023 Dec; 145(50):27325-27335. PubMed ID: 38069901
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unusual Post-Translational Modifications in the Biosynthesis of Lasso Peptides.
    Duan Y; Niu W; Pang L; Bian X; Zhang Y; Zhong G
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806232
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Out for a RiPP: challenges and advances in genome mining of ribosomal peptides from fungi.
    Kessler SC; Chooi YH
    Nat Prod Rep; 2022 Feb; 39(2):222-230. PubMed ID: 34581394
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Legonaridin, a new member of linaridin RiPP from a Ghanaian Streptomyces isolate.
    Rateb ME; Zhai Y; Ehrner E; Rath CM; Wang X; Tabudravu J; Ebel R; Bibb M; Kyeremeh K; Dorrestein PC; Hong K; Jaspars M; Deng H
    Org Biomol Chem; 2015 Oct; 13(37):9585-92. PubMed ID: 26256511
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heterologous Production of Microbial Ribosomally Synthesized and Post-translationally Modified Peptides.
    Zhang Y; Chen M; Bruner SD; Ding Y
    Front Microbiol; 2018; 9():1801. PubMed ID: 30135682
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles.
    Cox CL; Doroghazi JR; Mitchell DA
    BMC Genomics; 2015 Oct; 16():778. PubMed ID: 26462797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.