These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 38672495)
61. Expansion of RiPP biosynthetic space through integration of pan-genomics and machine learning uncovers a novel class of lanthipeptides. Kloosterman AM; Cimermancic P; Elsayed SS; Du C; Hadjithomas M; Donia MS; Fischbach MA; van Wezel GP; Medema MH PLoS Biol; 2020 Dec; 18(12):e3001026. PubMed ID: 33351797 [TBL] [Abstract][Full Text] [Related]
62. Diverse Protein Architectures and α- Imani AS; Lee AR; Vishwanathan N; de Waal F; Freeman MF ACS Chem Biol; 2022 Apr; 17(4):908-917. PubMed ID: 35297605 [TBL] [Abstract][Full Text] [Related]
63. Functional expression of diverse post-translational peptide-modifying enzymes in Escherichia coli under uniform expression and purification conditions. Glassey E; King AM; Anderson DA; Zhang Z; Voigt CA PLoS One; 2022; 17(9):e0266488. PubMed ID: 36121811 [TBL] [Abstract][Full Text] [Related]
64. Disordered regions in proteusin peptides guide post-translational modification by a flavin-dependent RiPP brominase. Nguyen NA; Vidya FNU; Yennawar NH; Wu H; McShan AC; Agarwal V Nat Commun; 2024 Feb; 15(1):1265. PubMed ID: 38341413 [TBL] [Abstract][Full Text] [Related]
65. Bioinformatic Atlas of Radical SAM Enzyme-Modified RiPP Natural Products Reveals an Isoleucine-Tryptophan Crosslink. Clark KA; Seyedsayamdost MR J Am Chem Soc; 2022 Oct; 144(39):17876-17888. PubMed ID: 36128669 [TBL] [Abstract][Full Text] [Related]
66. The B1 Protein Guides the Biosynthesis of a Lasso Peptide. Zhu S; Fage CD; Hegemann JD; Mielcarek A; Yan D; Linne U; Marahiel MA Sci Rep; 2016 Oct; 6():35604. PubMed ID: 27752134 [TBL] [Abstract][Full Text] [Related]
67. A Single Amino Acid Switch Alters the Isoprene Donor Specificity in Ribosomally Synthesized and Post-Translationally Modified Peptide Prenyltransferases. Estrada P; Morita M; Hao Y; Schmidt EW; Nair SK J Am Chem Soc; 2018 Jul; 140(26):8124-8127. PubMed ID: 29924593 [TBL] [Abstract][Full Text] [Related]
68. Evolutionary Spread of Distinct O-methyltransferases Guides the Discovery of Unique Isoaspartate-Containing Peptides, Pamtides. Lee H; Park SH; Kim J; Lee J; Koh MS; Lee JH; Kim S Adv Sci (Weinh); 2024 Jan; 11(2):e2305946. PubMed ID: 37987032 [TBL] [Abstract][Full Text] [Related]
69. Cytochromes P450 Associated with the Biosyntheses of Ribosomally Synthesized and Post-translationally Modified Peptides. Zhong G ACS Bio Med Chem Au; 2023 Oct; 3(5):371-388. PubMed ID: 37876494 [TBL] [Abstract][Full Text] [Related]
70. Characterization of a Dehydratase and Methyltransferase in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides in Lachnospiraceae. Huo L; Zhao X; Acedo JZ; Estrada P; Nair SK; van der Donk WA Chembiochem; 2020 Jan; 21(1-2):190-199. PubMed ID: 31532570 [TBL] [Abstract][Full Text] [Related]
71. Uncovering the unexplored diversity of thioamidated ribosomal peptides in Actinobacteria using the RiPPER genome mining tool. Santos-Aberturas J; Chandra G; Frattaruolo L; Lacret R; Pham TH; Vior NM; Eyles TH; Truman AW Nucleic Acids Res; 2019 May; 47(9):4624-4637. PubMed ID: 30916321 [TBL] [Abstract][Full Text] [Related]
72. MetaMiner: A Scalable Peptidogenomics Approach for Discovery of Ribosomal Peptide Natural Products with Blind Modifications from Microbial Communities. Cao L; Gurevich A; Alexander KL; Naman CB; Leão T; Glukhov E; Luzzatto-Knaan T; Vargas F; Quinn R; Bouslimani A; Nothias LF; Singh NK; Sanders JG; Benitez RAS; Thompson LR; Hamid MN; Morton JT; Mikheenko A; Shlemov A; Korobeynikov A; Friedberg I; Knight R; Venkateswaran K; Gerwick WH; Gerwick L; Dorrestein PC; Pevzner PA; Mohimani H Cell Syst; 2019 Dec; 9(6):600-608.e4. PubMed ID: 31629686 [TBL] [Abstract][Full Text] [Related]
73. Salinipeptins: Integrated Genomic and Chemical Approaches Reveal Unusual d-Amino Acid-Containing Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs) from a Great Salt Lake Streptomyces sp. Shang Z; Winter JM; Kauffman CA; Yang I; Fenical W ACS Chem Biol; 2019 Mar; 14(3):415-425. PubMed ID: 30753052 [TBL] [Abstract][Full Text] [Related]
74. Genome mining strategies for ribosomally synthesised and post-translationally modified peptides. Russell AH; Truman AW Comput Struct Biotechnol J; 2020; 18():1838-1851. PubMed ID: 32728407 [TBL] [Abstract][Full Text] [Related]
75. Rapid Screening of Lanthipeptide Analogs via In-Colony Removal of Leader Peptides in Escherichia coli. Si T; Tian Q; Min Y; Zhang L; Sweedler JV; van der Donk WA; Zhao H J Am Chem Soc; 2018 Sep; 140(38):11884-11888. PubMed ID: 30183279 [TBL] [Abstract][Full Text] [Related]
76. Macrocyclization and Backbone Modification in RiPP Biosynthesis. Lee H; van der Donk WA Annu Rev Biochem; 2022 Jun; 91():269-294. PubMed ID: 35303785 [TBL] [Abstract][Full Text] [Related]
77. Revealing nature's synthetic potential through the study of ribosomal natural product biosynthesis. Dunbar KL; Mitchell DA ACS Chem Biol; 2013 Mar; 8(3):473-87. PubMed ID: 23286465 [TBL] [Abstract][Full Text] [Related]
78. Genome mining for ribosomally synthesized natural products. Velásquez JE; van der Donk WA Curr Opin Chem Biol; 2011 Feb; 15(1):11-21. PubMed ID: 21095156 [TBL] [Abstract][Full Text] [Related]
79. Nocathioamides, Uncovered by a Tunable Metabologenomic Approach, Define a Novel Class of Chimeric Lanthipeptides. Saad H; Aziz S; Gehringer M; Kramer M; Straetener J; Berscheid A; Brötz-Oesterhelt H; Gross H Angew Chem Int Ed Engl; 2021 Jul; 60(30):16472-16479. PubMed ID: 33991039 [TBL] [Abstract][Full Text] [Related]
80. Engineering ribosomally synthesized and posttranslationally modified peptides as new antibiotics. Vagstad AL Curr Opin Biotechnol; 2023 Apr; 80():102891. PubMed ID: 36702077 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]