These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 38672863)
1. Synergistic Effects and Kinetic Analysis in Co-Pyrolysis of Peanut Shells and Polypropylene. Huang Z; Wu J; Yang T; Wang Z; Zhang T; Gao F; Yang L; Li G Foods; 2024 Apr; 13(8):. PubMed ID: 38672863 [TBL] [Abstract][Full Text] [Related]
2. Pyrolysis of Mixed Plastic Waste: I. Kinetic Study. Dubdub I; Al-Yaari M Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33142917 [TBL] [Abstract][Full Text] [Related]
3. Thermal Behavior of Mixed Plastics at Different Heating Rates: I. Pyrolysis Kinetics. Dubdub I; Al-Yaari M Polymers (Basel); 2021 Oct; 13(19):. PubMed ID: 34641228 [TBL] [Abstract][Full Text] [Related]
4. Enhanced biofuel production by co-pyrolysis of distiller's grains and waste plastics: A quantitative appraisal of kinetic behaviors and product characteristics. Li G; Yang T; Xiao W; Yao X; Su M; Pan M; Wang X; Lyu T Chemosphere; 2023 Nov; 342():140137. PubMed ID: 37730021 [TBL] [Abstract][Full Text] [Related]
5. Insight into synergistic effects of biomass-polypropylene co-pyrolysis using representative biomass constituents. Chen R; Zhang S; Cong K; Li Q; Zhang Y Bioresour Technol; 2020 Jul; 307():123243. PubMed ID: 32244077 [TBL] [Abstract][Full Text] [Related]
6. Selective recovery of pyrolyzates of biodegradable (PLA, PHBH) and common plastics (HDPE, PP, PS) during co-pyrolysis under slow heating. Adachi W; Kumagai S; Shao Z; Saito Y; Yoshioka T Sci Rep; 2024 Jul; 14(1):16476. PubMed ID: 39014021 [TBL] [Abstract][Full Text] [Related]
7. Investigation of Synergistic Effects and Kinetics on Co-Pyrolysis of Shujaa Aldeen A; Wang J; Zhang B; Tian S; Xu Z; Zhang H Int J Environ Res Public Health; 2022 Jun; 19(12):. PubMed ID: 35742352 [TBL] [Abstract][Full Text] [Related]
8. Pyrolysis of mixed municipal solid waste: Characterisation, interaction effect and kinetic modelling using the thermogravimetric approach. Chhabra V; Bhattacharya S; Shastri Y Waste Manag; 2019 May; 90():152-167. PubMed ID: 30935785 [TBL] [Abstract][Full Text] [Related]
9. Co-pyrolysis of peanut shell with municipal sludge: reaction mechanism, product distribution, and synergy. Zou L; He X; Yang W; Shao H; Wang Y; Zhao Q Environ Sci Pollut Res Int; 2023 Sep; 30(41):94081-94096. PubMed ID: 37526831 [TBL] [Abstract][Full Text] [Related]
10. Thermal behaviour and kinetic study of co-pyrolysis of microalgae with different plastics. Chen R; Zhang S; Yang X; Li G; Zhou H; Li Q; Zhang Y Waste Manag; 2021 May; 126():331-339. PubMed ID: 33798821 [TBL] [Abstract][Full Text] [Related]
12. Oil recovery from microwave co-pyrolysis of polystyrene and polypropylene plastic particles for pollution mitigation. Ahmad F; Cao W; Zhang Y; Pan R; Zhao W; Liu W; Shuai Y Environ Pollut; 2024 Sep; 356():124240. PubMed ID: 38810672 [TBL] [Abstract][Full Text] [Related]
13. Kinetic studies on the pyrolysis of plastic waste using a combination of model-fitting and model-free methods. Yao Z; Yu S; Su W; Wu W; Tang J; Qi W Waste Manag Res; 2020 May; 38(1_suppl):77-85. PubMed ID: 31957598 [TBL] [Abstract][Full Text] [Related]
14. Energy optimization from a binary mixture of non-edible oilseeds pyrolysis: Kinetic triplets analysis using Thermogravimetric Analyser and prediction modeling by Artificial Neural Network. Sahoo A; Gautam R; Kumar S; Mohanty K J Environ Manage; 2021 Nov; 297():113253. PubMed ID: 34284329 [TBL] [Abstract][Full Text] [Related]
15. Insights into kinetic and thermodynamic analyses of co-pyrolysis of wheat straw and plastic waste via thermogravimetric analysis. Singh S; Tagade A; Verma A; Sharma A; Tekade SP; Sawarkar AN Bioresour Technol; 2022 Jul; 356():127332. PubMed ID: 35589042 [TBL] [Abstract][Full Text] [Related]
16. Effective waste management through Co-pyrolysis of EFB and tire waste: Mechanistic and synergism analysis. Mong GR; Liew CS; Idris R; Woon KS; Chong WWF; Chiong MC; Lim JW; Chong CT; Lee CT; Wong KY; Ng AKL J Environ Manage; 2024 Sep; 368():122172. PubMed ID: 39137640 [TBL] [Abstract][Full Text] [Related]
17. Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components. Ansah E; Wang L; Shahbazi A Waste Manag; 2016 Oct; 56():196-206. PubMed ID: 27324928 [TBL] [Abstract][Full Text] [Related]
18. Synergistic Effect and Chlorine-Release Behaviors During Co-pyrolysis of LLDPE, PP, and PVC. Yuan Z; Zhang J; Zhao P; Wang Z; Cui X; Gao L; Guo Q; Tian H ACS Omega; 2020 May; 5(20):11291-11298. PubMed ID: 32478216 [TBL] [Abstract][Full Text] [Related]
19. Sustainable Environmental Assessment of Waste-to-Energy Practices: Co-Pyrolysis of Food Waste and Discarded Meal Boxes. Li G; Yang T; Xiao W; Wu J; Xu F; Li L; Gao F; Huang Z Foods; 2022 Nov; 11(23):. PubMed ID: 36496648 [TBL] [Abstract][Full Text] [Related]
20. Thermal Behavior and Pyrolysis Kinetics of Mushroom Residue with the Introduction of Waste Plastics. Li J; Pu T; Wang Z; Liu T Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765678 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]