BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 3867314)

  • 1. Electrical potential dependence of Na+-sugar cotransport determined using TPP+ influx.
    Restrepo D; Kimmich GA
    Ann N Y Acad Sci; 1985; 456():77-9. PubMed ID: 3867314
    [No Abstract]   [Full Text] [Related]  

  • 2. The potential dependence of the intestinal Na+-dependent sugar transporter.
    Kimmich GA; Randles J; Restrepo D; Montrose M
    Ann N Y Acad Sci; 1985; 456():63-76. PubMed ID: 3911844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanistic nature of the membrane potential dependence of sodium-sugar cotransport in small intestine.
    Restrepo D; Kimmich GA
    J Membr Biol; 1985; 87(2):159-72. PubMed ID: 4078884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The characterization of intestinal acidic amino-acid transport.
    Wingrove TG; Kimmich GA
    Ann N Y Acad Sci; 1985; 456():80-2. PubMed ID: 2868687
    [No Abstract]   [Full Text] [Related]  

  • 5. Development of Na+-dependent hexose transport in cultured renal epithelial cells (LLC-PK1).
    Weiss ER; Amsler K; Dawson WD; Cook JS
    Ann N Y Acad Sci; 1985; 456():420-35. PubMed ID: 3004299
    [No Abstract]   [Full Text] [Related]  

  • 6. Membrane potential and neutral amino acid transport in plasma membrane vesicles from Simian virus 40 transformed mouse fibroblasts.
    Lever JE
    Biochemistry; 1977 Sep; 16(19):4328-34. PubMed ID: 197993
    [No Abstract]   [Full Text] [Related]  

  • 7. Membrane potential in a potassium transport-negative mutant of Escherichia coli K-12. The distribution of rubidium in the presence of valinomycin indicates a higher potential than that of the tetraphenylphosphonium cation.
    Bakker EP
    Biochim Biophys Acta; 1982 Sep; 681(3):474-83. PubMed ID: 6812627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of mammalian putrescine and spermidine transport on plasma-membrane potential: identification of an amiloride binding site on the putrescine carrier.
    Poulin R; Zhao C; Verma S; Charest-Gaudreault R; Audette M
    Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1283-91. PubMed ID: 9494098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion-coupled neurotransmitter transport across the synaptic plasma membrane.
    Kanner BI; Radian R
    Ann N Y Acad Sci; 1985; 456():153-61. PubMed ID: 2868683
    [No Abstract]   [Full Text] [Related]  

  • 10. Evidence for an intestinal Na+:sugar transport coupling stoichiometry of 2.0.
    Kimmich GA; Randles J
    Biochim Biophys Acta; 1980 Mar; 596(3):439-44. PubMed ID: 7362824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influx of L-arginine is an indicator of membrane potential in human fibroblasts.
    Bussolati O; Laris PC; Nucci FA; Dall'Asta V; Franchi-Gazzola R; Guidotti GG; Gazzola GC
    Am J Physiol; 1989 Apr; 256(4 Pt 1):C930-5. PubMed ID: 2539733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic analysis of mechanism of intestinal Na+-dependent sugar transport.
    Restrepo D; Kimmich GA
    Am J Physiol; 1985 May; 248(5 Pt 1):C498-509. PubMed ID: 3993771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of intestinal epithelial cells and evaluation of transport functions.
    Kimmich GA
    Methods Enzymol; 1990; 192():324-40. PubMed ID: 2074796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of transmembrane proton conductivity of protonophores by membrane-permeant cations.
    Ahmed I; Krishnamoorthy G
    Biochim Biophys Acta; 1990 May; 1024(2):298-306. PubMed ID: 1693858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium-calcium exchange activity generates a current in cardiac membrane vesicles.
    Reeves JP; Sutko JL
    Science; 1980 Jun; 208(4451):1461-4. PubMed ID: 7384788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new method for determination of relative ion permeabilities in isolated cells.
    Kimmich GA; Randles J; Restrepo D; Montrose M
    Am J Physiol; 1985 May; 248(5 Pt 1):C399-405. PubMed ID: 3993766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetraphenylphosphonium is an indicator of negative membrane potential in Candida albicans.
    Prasad R; Höfer M
    Biochim Biophys Acta; 1986 Oct; 861(2):377-80. PubMed ID: 3530329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of hyperthermia on the membrane potential and Na+ transport of V79 fibroblasts.
    Mikkelsen RB; Asher CR
    J Cell Physiol; 1990 Aug; 144(2):216-21. PubMed ID: 2380252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of membrane potential on Na+-dependent sugar transport by ATP-depleted intestinal cells.
    Carter-Su C; Kimmich GA
    Am J Physiol; 1980 Mar; 238(3):C73-80. PubMed ID: 7369349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Determination of electrical characteristics of synaptosomal membranes of the brain].
    Okun' IM
    Biofizika; 1986; 31(1):68-72. PubMed ID: 3955093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.