These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38673146)

  • 1. Medium- and High-Entropy Rare Earth Hexaborides with Enhanced Solar Energy Absorption and Infrared Emissivity.
    Wang H; Pan Y; Zhang J; Wang K; Xue L; Huang M; Li Y; Yang F; Chen H
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanocrystalline high-entropy hexaboride ceramics enable remarkable performance as thermionic emission cathodes.
    Ma M; Yang X; Meng H; Zhao Z; He J; Chu Y
    Fundam Res; 2023 Nov; 3(6):979-987. PubMed ID: 38933014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Thermal Stability and Broad Temperature Range in High-Entropy (La
    Sun H; Wang Y; Liu Y; Wu R; Chang A; Zhao P; Zhang B
    ACS Appl Mater Interfaces; 2024 Mar; 16(10):12821-12832. PubMed ID: 38416064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absorption to reflection transition in selective solar coatings.
    Olson KD; Talghader JJ
    Opt Express; 2012 Jul; 20 Suppl 4():A554-9. PubMed ID: 22828624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and Optical Absorption Properties of Ternary Rare Earth Boride La
    Naren G; Ren TY; Bao LH; Chao LM; Tegus O
    J Nanosci Nanotechnol; 2020 Aug; 20(8):5064-5069. PubMed ID: 32126700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rare-Earth-Zirconate Porous High-Entropy Ceramics with Unique Pore Structures for Thermal Insulating Applications.
    Wang H; Xu J; Zhu J; Meng X; Lin L; Zhang P; Gao F
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling.
    Kong A; Cai B; Shi P; Yuan XC
    Opt Express; 2019 Oct; 27(21):30102-30115. PubMed ID: 31684263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lanthanum hexaboride for solar energy applications.
    Sani E; Mercatelli L; Meucci M; Zoli L; Sciti D
    Sci Rep; 2017 Apr; 7(1):718. PubMed ID: 28386129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the Surface Plasmon Resonance of Lanthanum Hexaboride to Absorb Solar Heat: A Review.
    Mattox TM; Urban JJ
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30563148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semiconductor-based Multilayer Selective Solar Absorber for Unconcentrated Solar Thermal Energy Conversion.
    Thomas NH; Chen Z; Fan S; Minnich AJ
    Sci Rep; 2017 Jul; 7(1):5362. PubMed ID: 28706230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband nonreciprocal thermal emissivity and absorptivity.
    Shayegan KJ; Hwang JS; Zhao B; Raman AP; Atwater HA
    Light Sci Appl; 2024 Jul; 13(1):176. PubMed ID: 39048563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST.
    Du KK; Li Q; Lyu YB; Ding JC; Lu Y; Cheng ZY; Qiu M
    Light Sci Appl; 2017 Jan; 6(1):e16194. PubMed ID: 30167194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultraviolet to Mid-Infrared Emissivity Control by Mechanically Reconfigurable Graphene.
    Krishna A; Kim JM; Leem J; Wang MC; Nam S; Lee J
    Nano Lett; 2019 Aug; 19(8):5086-5092. PubMed ID: 31251631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blackbody-cavity ideal absorbers for solar energy harvesting.
    Tian Y; Liu X; Ghanekar A; Chen F; Caratenuto A; Zheng Y
    Sci Rep; 2020 Nov; 10(1):20304. PubMed ID: 33219278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable Infrared Emissivity in Multilayer Graphene by Ionic Liquid Intercalation.
    Zhao L; Zhang R; Deng C; Peng Y; Jiang T
    Nanomaterials (Basel); 2019 Jul; 9(8):. PubMed ID: 31370164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal infrared emissivity spectrum and its characteristics of crude oil slick covered seawater.
    Xiong P; Gu XF; Yu T; Meng QY; Li JG; Shi JX; Cheng Y; Wang L; Liu WS; Liu QY; Zhao LM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Nov; 34(11):2953-60. PubMed ID: 25752038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface Reconstruction of La
    Xie Z; Gao Y; Wang Y; Fang Z; Lu C; Xu Z
    ACS Appl Mater Interfaces; 2024 Aug; 16(33):44288-44297. PubMed ID: 39116297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion.
    Wu D; Liu C; Liu Y; Xu Z; Yu Z; Yu L; Chen L; Ma R; Zhang J; Ye H
    RSC Adv; 2018 Jun; 8(38):21054-21064. PubMed ID: 35539953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical properties of group-3 metal hexaboride nanoparticles by first-principles calculations.
    Yoshio S; Maki K; Adachi K
    J Chem Phys; 2016 Jun; 144(23):234702. PubMed ID: 27334185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel model concerning the independence of emissivity and absorptivity for enhancing the sustainability of radiant cooling technology.
    Zhang F; Zhang G
    Environ Sci Pollut Res Int; 2022 Aug; 29(37):55675-55690. PubMed ID: 35320473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.