These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 38673408)
1. A New Auto-Regressive Multi-Variable Modified Auto-Encoder for Multivariate Time-Series Prediction: A Case Study with Application to COVID-19 Pandemics. de Oliveira EV; Aragão DP; Gonçalves LMG Int J Environ Res Public Health; 2024 Apr; 21(4):. PubMed ID: 38673408 [TBL] [Abstract][Full Text] [Related]
2. A COVID-19 Pandemic Artificial Intelligence-Based System With Deep Learning Forecasting and Automatic Statistical Data Acquisition: Development and Implementation Study. Yu CS; Chang SS; Chang TH; Wu JL; Lin YJ; Chien HF; Chen RJ J Med Internet Res; 2021 May; 23(5):e27806. PubMed ID: 33900932 [TBL] [Abstract][Full Text] [Related]
3. Time series forecasting of new cases and new deaths rate for COVID-19 using deep learning methods. Ayoobi N; Sharifrazi D; Alizadehsani R; Shoeibi A; Gorriz JM; Moosaei H; Khosravi A; Nahavandi S; Gholamzadeh Chofreh A; Goni FA; Klemeš JJ; Mosavi A Results Phys; 2021 Aug; 27():104495. PubMed ID: 34221854 [TBL] [Abstract][Full Text] [Related]
4. Multivariate data driven prediction of COVID-19 dynamics: Towards new results with temperature, humidity and air quality data. Aragão DP; Oliveira EV; Bezerra AA; Dos Santos DH; da Silva Junior AG; Pereira IG; Piscitelli P; Miani A; Distante C; Cuno JS; Conci A; Gonçalves LMG Environ Res; 2022 Mar; 204(Pt D):112348. PubMed ID: 34767822 [TBL] [Abstract][Full Text] [Related]
5. Forecasting the dynamics of cumulative COVID-19 cases (confirmed, recovered and deaths) for top-16 countries using statistical machine learning models: Auto-Regressive Integrated Moving Average (ARIMA) and Seasonal Auto-Regressive Integrated Moving Average (SARIMA). ArunKumar KE; Kalaga DV; Sai Kumar CM; Chilkoor G; Kawaji M; Brenza TM Appl Soft Comput; 2021 May; 103():107161. PubMed ID: 33584158 [TBL] [Abstract][Full Text] [Related]
6. Forecasting Covid-19 Dynamics in Brazil: A Data Driven Approach. Pereira IG; Guerin JM; Silva Júnior AG; Garcia GS; Piscitelli P; Miani A; Distante C; Gonçalves LMG Int J Environ Res Public Health; 2020 Jul; 17(14):. PubMed ID: 32679861 [TBL] [Abstract][Full Text] [Related]
8. Forecasting the Severity of COVID-19 Pandemic Amidst the Emerging SARS-CoV-2 Variants: Adoption of ARIMA Model. Li C; Sampene AK; Agyeman FO; Robert B; Ayisi AL Comput Math Methods Med; 2022; 2022():3163854. PubMed ID: 35069779 [TBL] [Abstract][Full Text] [Related]
9. Forecasting COVID-19 Pandemic Using Prophet, ARIMA, and Hybrid Stacked LSTM-GRU Models in India. Sah S; Surendiran B; Dhanalakshmi R; Mohanty SN; Alenezi F; Polat K Comput Math Methods Med; 2022; 2022():1556025. PubMed ID: 35529266 [TBL] [Abstract][Full Text] [Related]
10. Prediction and analysis of COVID-19 daily new cases and cumulative cases: times series forecasting and machine learning models. Wang Y; Yan Z; Wang D; Yang M; Li Z; Gong X; Wu D; Zhai L; Zhang W; Wang Y BMC Infect Dis; 2022 May; 22(1):495. PubMed ID: 35614387 [TBL] [Abstract][Full Text] [Related]
11. Modeling and forecasting the total number of cases and deaths due to pandemic. Khan N; Arshad A; Azam M; Al-Marshadi AH; Aslam M J Med Virol; 2022 Apr; 94(4):1592-1605. PubMed ID: 34877691 [TBL] [Abstract][Full Text] [Related]
12. Prediction of global omicron pandemic using ARIMA, MLR, and Prophet models. Zhao D; Zhang R; Zhang H; He S Sci Rep; 2022 Oct; 12(1):18138. PubMed ID: 36307471 [TBL] [Abstract][Full Text] [Related]
13. A proficient approach to forecast COVID-19 spread via optimized dynamic machine learning models. Alali Y; Harrou F; Sun Y Sci Rep; 2022 Feb; 12(1):2467. PubMed ID: 35165290 [TBL] [Abstract][Full Text] [Related]
14. Pandemic velocity: Forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model. Watson GL; Xiong D; Zhang L; Zoller JA; Shamshoian J; Sundin P; Bufford T; Rimoin AW; Suchard MA; Ramirez CM PLoS Comput Biol; 2021 Mar; 17(3):e1008837. PubMed ID: 33780443 [TBL] [Abstract][Full Text] [Related]
15. Time Series Forecasting of Univariate Agrometeorological Data: A Comparative Performance Evaluation via One-Step and Multi-Step Ahead Forecasting Strategies. Suradhaniwar S; Kar S; Durbha SS; Jagarlapudi A Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33916026 [TBL] [Abstract][Full Text] [Related]
16. ARIMA modelling & forecasting of COVID-19 in top five affected countries. Sahai AK; Rath N; Sood V; Singh MP Diabetes Metab Syndr; 2020; 14(5):1419-1427. PubMed ID: 32755845 [TBL] [Abstract][Full Text] [Related]
17. Covid-19 Dynamic Monitoring and Real-Time Spatio-Temporal Forecasting. da Silva CC; de Lima CL; da Silva ACG; Silva EL; Marques GS; de Araújo LJB; Albuquerque Júnior LA; de Souza SBJ; de Santana MA; Gomes JC; Barbosa VAF; Musah A; Kostkova P; Dos Santos WP; da Silva Filho AG Front Public Health; 2021; 9():641253. PubMed ID: 33898377 [No Abstract] [Full Text] [Related]
18. Short-term forecasting of daily COVID-19 cases in Brazil by using the Holt's model. Martinez EZ; Aragon DC; Nunes AA Rev Soc Bras Med Trop; 2020; 53():e20200283. PubMed ID: 32520235 [TBL] [Abstract][Full Text] [Related]
19. Multi-Regional Modeling of Cumulative COVID-19 Cases Integrated with Environmental Forest Knowledge Estimation: A Deep Learning Ensemble Approach. Alamrouni A; Aslanova F; Mati S; Maccido HS; Jibril AA; Usman AG; Abba SI Int J Environ Res Public Health; 2022 Jan; 19(2):. PubMed ID: 35055559 [TBL] [Abstract][Full Text] [Related]
20. Prediction of the COVID-19 Pandemic for the Top 15 Affected Countries: Advanced Autoregressive Integrated Moving Average (ARIMA) Model. Singh RK; Rani M; Bhagavathula AS; Sah R; Rodriguez-Morales AJ; Kalita H; Nanda C; Sharma S; Sharma YD; Rabaan AA; Rahmani J; Kumar P JMIR Public Health Surveill; 2020 May; 6(2):e19115. PubMed ID: 32391801 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]