BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 38673726)

  • 1. Advancements in Photothermal Therapy Using Near-Infrared Light for Bone Tumors.
    Xie M; Gong T; Wang Y; Li Z; Lu M; Luo Y; Min L; Tu C; Zhang X; Zeng Q; Zhou Y
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38673726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical development and potential of photothermal and photodynamic therapies for cancer.
    Li X; Lovell JF; Yoon J; Chen X
    Nat Rev Clin Oncol; 2020 Nov; 17(11):657-674. PubMed ID: 32699309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress of Phototherapy Applications in the Treatment of Bone Cancer.
    Sun J; Xing F; Braun J; Traub F; Rommens PM; Xiang Z; Ritz U
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A porous material excited by near-infrared light for photo/chemodynamic and photothermal dual-mode combination therapy.
    Sun M; Yang D; Sun Q; Jia T; Kuang Y; Gai S; He F; Zhang F; Yang P
    J Mater Chem B; 2020 Dec; 8(46):10559-10576. PubMed ID: 32939520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-infrared photodynamic and photothermal co-therapy based on organic small molecular dyes.
    Guo S; Gu D; Yang Y; Tian J; Chen X
    J Nanobiotechnology; 2023 Sep; 21(1):348. PubMed ID: 37759287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NIR light-assisted phototherapies for bone-related diseases and bone tissue regeneration: A systematic review.
    Wan Z; Zhang P; Lv L; Zhou Y
    Theranostics; 2020; 10(25):11837-11861. PubMed ID: 33052249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor microenvironment-responsive nanohybrid for hypoxia amelioration with photodynamic and near-infrared II photothermal combination therapy.
    Zhang P; Wu Q; Yang J; Hou M; Zheng B; Xu J; Chai Y; Xiong L; Zhang C
    Acta Biomater; 2022 Jul; 146():450-464. PubMed ID: 35526739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of phototherapeutic-based nanoparticles in colorectal cancer.
    Yan J; Wang C; Jiang X; Wei Y; Wang Q; Cui K; Xu X; Wang F; Zhang L
    Int J Biol Sci; 2021; 17(5):1361-1381. PubMed ID: 33867852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hetero-Core-Shell BiNS-Fe@Fe as a Potential Theranostic Nanoplatform for Multimodal Imaging-Guided Simultaneous Photothermal-Photodynamic and Chemodynamic Treatment.
    Ma S; Xie J; Wang L; Zhou Z; Luo X; Yan J; Ran G
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):10728-10740. PubMed ID: 33645960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Innovative approaches for cancer treatment: graphene quantum dots for photodynamic and photothermal therapies.
    Zarepour A; Khosravi A; Yücel Ayten N; Çakır Hatır P; Iravani S; Zarrabi A
    J Mater Chem B; 2024 May; 12(18):4307-4334. PubMed ID: 38595268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research progress of organic photothermal agents delivery and synergistic therapy systems.
    Li Y; Qi H; Geng Y; Li L; Cai X
    Colloids Surf B Biointerfaces; 2024 Feb; 234():113743. PubMed ID: 38215604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of breast cancer in vivo by dual photodynamic and photothermal approaches with the aid of curcumin photosensitizer and magnetic nanoparticles.
    Ashkbar A; Rezaei F; Attari F; Ashkevarian S
    Sci Rep; 2020 Dec; 10(1):21206. PubMed ID: 33273672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives.
    Nag S; Mitra O; Tripathi G; Adur I; Mohanto S; Nama M; Samanta S; Gowda BHJ; Subramaniyan V; Sundararajan V; Kumarasamy V
    Photodiagnosis Photodyn Ther; 2024 Feb; 45():103959. PubMed ID: 38228257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A near-infrared and lysosome-targeted BODIPY photosensitizer for photodynamic and photothermal synergistic therapy.
    Liu Y; Gao J; Li H; Yang M; Lv J; Zhou Y; Yuan Z; Li X
    Org Biomol Chem; 2023 Jun; 21(22):4672-4682. PubMed ID: 37219018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-infrared-absorbing gold nanopopcorns with iron oxide cluster core for magnetically amplified photothermal and photodynamic cancer therapy.
    Bhana S; Lin G; Wang L; Starring H; Mishra SR; Liu G; Huang X
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11637-47. PubMed ID: 25965727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ce6-Modified Carbon Dots for Multimodal-Imaging-Guided and Single-NIR-Laser-Triggered Photothermal/Photodynamic Synergistic Cancer Therapy by Reduced Irradiation Power.
    Sun S; Chen J; Jiang K; Tang Z; Wang Y; Li Z; Liu C; Wu A; Lin H
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5791-5803. PubMed ID: 30648846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photodynamic and Photothermal Therapies: Synergy Opportunities for Nanomedicine.
    Overchuk M; Weersink RA; Wilson BC; Zheng G
    ACS Nano; 2023 May; 17(9):7979-8003. PubMed ID: 37129253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic nanoparticles modified-porous scaffolds for bone regeneration and photothermal therapy against tumors.
    Lu JW; Yang F; Ke QF; Xie XT; Guo YP
    Nanomedicine; 2018 Apr; 14(3):811-822. PubMed ID: 29339189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticle-based photothermal and photodynamic immunotherapy for tumor treatment.
    Hou X; Tao Y; Pang Y; Li X; Jiang G; Liu Y
    Int J Cancer; 2018 Dec; 143(12):3050-3060. PubMed ID: 29981170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How promising is phototherapy for cancer?
    Shi H; Sadler PJ
    Br J Cancer; 2020 Sep; 123(6):871-873. PubMed ID: 32587359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.