These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
44. Arbuscular mycorrhizal symbioses alleviating salt stress in maize is associated with a decline in root-to-leaf gradient of Na Wang H; An T; Huang D; Liu R; Xu B; Zhang S; Deng X; Siddique KHM; Chen Y BMC Plant Biol; 2021 Oct; 21(1):457. PubMed ID: 34620078 [TBL] [Abstract][Full Text] [Related]
45. Dual Inoculation with Romero-Munar A; Aroca R; Zamarreño AM; García-Mina JM; Perez-Hernández N; Ruiz-Lozano JM Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982272 [TBL] [Abstract][Full Text] [Related]
46. Herbivory of maize by southern corn rootworm induces expression of the major intrinsic protein ZmNIP1;1 and leads to the discovery of a novel aquaporin ZmPIP2;8. Lawrence SD; Novak NG; Xu H; Cooke JE Plant Signal Behav; 2013 Aug; 8(8):. PubMed ID: 23673351 [TBL] [Abstract][Full Text] [Related]
47. The characterization of six auxin-induced tomato GH3 genes uncovers a member, SlGH3.4, strongly responsive to arbuscular mycorrhizal symbiosis. Liao D; Chen X; Chen A; Wang H; Liu J; Liu J; Gu M; Sun S; Xu G Plant Cell Physiol; 2015 Apr; 56(4):674-87. PubMed ID: 25535196 [TBL] [Abstract][Full Text] [Related]
48. Two putative-aquaporin genes are differentially expressed during arbuscular mycorrhizal symbiosis in Lotus japonicus. Giovannetti M; Balestrini R; Volpe V; Guether M; Straub D; Costa A; Ludewig U; Bonfante P BMC Plant Biol; 2012 Oct; 12():186. PubMed ID: 23046713 [TBL] [Abstract][Full Text] [Related]
49. Growth, cadmium uptake and accumulation of maize (Zea mays L.) under the effects of arbuscular mycorrhizal fungi. Liu L; Gong Z; Zhang Y; Li P Ecotoxicology; 2014 Dec; 23(10):1979-86. PubMed ID: 25190357 [TBL] [Abstract][Full Text] [Related]
50. [Arbuscular mycorrhizal symbiosis influences the biological effects of nano-ZnO on maize]. Wang WZ; Wang FY; Li S; Liu XQ Huan Jing Ke Xue; 2014 Aug; 35(8):3135-41. PubMed ID: 25338390 [TBL] [Abstract][Full Text] [Related]
51. RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis. Handa Y; Nishide H; Takeda N; Suzuki Y; Kawaguchi M; Saito K Plant Cell Physiol; 2015 Aug; 56(8):1490-511. PubMed ID: 26009592 [TBL] [Abstract][Full Text] [Related]
52. Arbuscular mycorrhizal symbiosis modulates nitrogen uptake and assimilation to enhance drought tolerance of Populus cathayana. Wang Z; Lian J; Liang J; Wei H; Chen H; Hu W; Tang M Plant Physiol Biochem; 2024 May; 210():108648. PubMed ID: 38653094 [TBL] [Abstract][Full Text] [Related]
53. Tomato plant growth promotion and drought tolerance conferred by three arbuscular mycorrhizal fungi is mediated by lipid metabolism. Zhang W; Xia K; Feng Z; Qin Y; Zhou Y; Feng G; Zhu H; Yao Q Plant Physiol Biochem; 2024 Mar; 208():108478. PubMed ID: 38430785 [TBL] [Abstract][Full Text] [Related]
54. Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. Duc NH; Csintalan Z; Posta K Plant Physiol Biochem; 2018 Nov; 132():297-307. PubMed ID: 30245343 [TBL] [Abstract][Full Text] [Related]
55. Distinct impact of arbuscular mycorrhizal isolates on tomato plant tolerance to drought combined with chronic and acute heat stress. Duc NH; Szentpéteri V; Mayer Z; Posta K Plant Physiol Biochem; 2023 Aug; 201():107892. PubMed ID: 37490823 [TBL] [Abstract][Full Text] [Related]
56. Arbuscular mycorrhizal fungi enhanced drought resistance in apple by regulating genes in the MAPK pathway. Huang D; Ma M; Wang Q; Zhang M; Jing G; Li C; Ma F Plant Physiol Biochem; 2020 Apr; 149():245-255. PubMed ID: 32087536 [TBL] [Abstract][Full Text] [Related]
57. Functionality of arbuscular mycorrhizal fungi varies across different growth stages of maize under drought conditions. Abrar M; Zhu Y; Maqsood Ur Rehman M; Batool A; Duan HX; Ashraf U; Aqeel M; Gong XF; Peng YN; Khan W; Wang ZY; Xiong YC Plant Physiol Biochem; 2024 Aug; 213():108839. PubMed ID: 38879986 [TBL] [Abstract][Full Text] [Related]
58. Identification and Functional Characterization of a Maize Phosphate Transporter Induced by Mycorrhiza Formation. Liu F; Xu Y; Han G; Wang W; Li X; Cheng B Plant Cell Physiol; 2018 Aug; 59(8):1683-1694. PubMed ID: 29767790 [TBL] [Abstract][Full Text] [Related]
59. The receptor kinase RiSho1 in Rhizophagus irregularis regulates arbuscule development and drought tolerance during arbuscular mycorrhizal symbiosis. Wang S; Han L; Ren Y; Hu W; Xie X; Chen H; Tang M New Phytol; 2024 Jun; 242(5):2207-2222. PubMed ID: 38481316 [TBL] [Abstract][Full Text] [Related]
60. Above-and below-ground feedback loop of maize is jointly enhanced by plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi in drier soil. Khan W; Zhu Y; Khan A; Zhao L; Yang YM; Wang N; Hao M; Ma Y; Nepal J; Ullah F; Rehman MMU; Abrar M; Xiong YC Sci Total Environ; 2024 Mar; 917():170417. PubMed ID: 38280611 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]