These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 38674100)

  • 1. Advancing Adverse Drug Reaction Prediction with Deep Chemical Language Model for Drug Safety Evaluation.
    Lin J; He Y; Ru C; Long W; Li M; Wen Z
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38674100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling Structural Alerts in Marketed Drugs for Improving Adverse Outcome Pathway Framework of Drug-Induced QT Prolongation.
    Long W; Li S; He Y; Lin J; Li M; Wen Z
    Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting adverse drug reactions through interpretable deep learning framework.
    Dey S; Luo H; Fokoue A; Hu J; Zhang P
    BMC Bioinformatics; 2018 Dec; 19(Suppl 21):476. PubMed ID: 30591036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of adverse drug reactions using drug convolutional neural networks.
    Mantripragada AS; Teja SP; Katasani RR; Joshi P; V M; Ramesh R
    J Bioinform Comput Biol; 2021 Feb; 19(1):2050046. PubMed ID: 33472571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico prediction of drug-induced rhabdomyolysis with machine-learning models and structural alerts.
    Cui X; Liu J; Zhang J; Wu Q; Li X
    J Appl Toxicol; 2019 Aug; 39(8):1224-1232. PubMed ID: 31006880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting QT prolongation in humans during early drug development using hERG inhibition and an anaesthetized guinea-pig model.
    Yao X; Anderson DL; Ross SA; Lang DG; Desai BZ; Cooper DC; Wheelan P; McIntyre MS; Bergquist ML; MacKenzie KI; Becherer JD; Hashim MA
    Br J Pharmacol; 2008 Aug; 154(7):1446-56. PubMed ID: 18587422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs.
    Liu M; Wu Y; Chen Y; Sun J; Zhao Z; Chen XW; Matheny ME; Xu H
    J Am Med Inform Assoc; 2012 Jun; 19(e1):e28-35. PubMed ID: 22718037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BiMPADR: A Deep Learning Framework for Predicting Adverse Drug Reactions in New Drugs.
    Li S; Zhang L; Wang L; Ji J; He J; Zheng X; Cao L; Li K
    Molecules; 2024 Apr; 29(8):. PubMed ID: 38675604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing a deep learning natural language processing algorithm for automated reporting of adverse drug reactions.
    McMaster C; Chan J; Liew DFL; Su E; Frauman AG; Chapman WW; Pires DEV
    J Biomed Inform; 2023 Jan; 137():104265. PubMed ID: 36464227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of Adverse Drug Reactions by Combining Biomedical Tripartite Network and Graph Representation Model.
    Xue R; Liao J; Shao X; Han K; Long J; Shao L; Ai N; Fan X
    Chem Res Toxicol; 2020 Jan; 33(1):202-210. PubMed ID: 31777246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A deep learning based multi-model approach for predicting drug-like chemical compound's toxicity.
    Saravanan KM; Wan JF; Dai L; Zhang J; Zhang JZH; Zhang H
    Methods; 2024 Jun; 226():164-175. PubMed ID: 38702021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A knowledge graph embedding based approach to predict the adverse drug reactions using a deep neural network.
    Joshi P; V M; Mukherjee A
    J Biomed Inform; 2022 Aug; 132():104122. PubMed ID: 35753606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review on the Recent Applications of Deep Learning in Predictive Drug Toxicological Studies.
    Sinha K; Ghosh N; Sil PC
    Chem Res Toxicol; 2023 Aug; 36(8):1174-1205. PubMed ID: 37561655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Structure-Activity Relationship (QSAR) Model for the Severity Prediction of Drug-Induced Rhabdomyolysis by Using Random Forest.
    Zhou Y; Li S; Zhao Y; Guo M; Liu Y; Li M; Wen Z
    Chem Res Toxicol; 2021 Feb; 34(2):514-521. PubMed ID: 33393765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational models for the prediction of adverse cardiovascular drug reactions.
    Jamal S; Ali W; Nagpal P; Grover S; Grover A
    J Transl Med; 2019 May; 17(1):171. PubMed ID: 31118067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting neurological Adverse Drug Reactions based on biological, chemical and phenotypic properties of drugs using machine learning models.
    Jamal S; Goyal S; Shanker A; Grover A
    Sci Rep; 2017 Apr; 7(1):872. PubMed ID: 28408735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of Drug-Induced Long QT Syndrome Using Machine Learning Applied to Harmonized Electronic Health Record Data.
    Simon ST; Mandair D; Tiwari P; Rosenberg MA
    J Cardiovasc Pharmacol Ther; 2021 Jul; 26(4):335-340. PubMed ID: 33682475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of adverse drug reactions due to genetic predisposition using deep neural networks.
    Dafniet B; Taboureau O
    Mol Inform; 2024 Jun; 43(6):e202400021. PubMed ID: 38850150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico prediction of chemical-induced hematotoxicity with machine learning and deep learning methods.
    Hua Y; Shi Y; Cui X; Li X
    Mol Divers; 2021 Aug; 25(3):1585-1596. PubMed ID: 34196933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of pharmacology data and the prediction of adverse drug reactions and off-target effects from chemical structure.
    Bender A; Scheiber J; Glick M; Davies JW; Azzaoui K; Hamon J; Urban L; Whitebread S; Jenkins JL
    ChemMedChem; 2007 Jun; 2(6):861-73. PubMed ID: 17477341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.