These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 38674747)

  • 1. Expanding the CRISPR Toolbox for Engineering Lycopene Biosynthesis in
    Zhan Z; Chen X; Ye Z; Zhao M; Li C; Gao S; Sinskey AJ; Yao L; Dai J; Jiang Y; Zheng X
    Microorganisms; 2024 Apr; 12(4):. PubMed ID: 38674747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum.
    Heider SA; Peters-Wendisch P; Wendisch VF
    BMC Microbiol; 2012 Sep; 12():198. PubMed ID: 22963379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering.
    Chen Y; Xiao W; Wang Y; Liu H; Li X; Yuan Y
    Microb Cell Fact; 2016 Jun; 15(1):113. PubMed ID: 27329233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of lycopene by metabolically engineered
    Zhang X; Wang D; Duan Y; Zheng X; Lin Y; Liang S
    Biosci Biotechnol Biochem; 2020 Mar; 84(3):463-470. PubMed ID: 31752618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of the IPP Precursor Supply for the Production of Lycopene, Decaprenoxanthin and Astaxanthin by Corynebacterium glutamicum.
    Heider SA; Wolf N; Hofemeier A; Peters-Wendisch P; Wendisch VF
    Front Bioeng Biotechnol; 2014; 2():28. PubMed ID: 25191655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplex gene editing and large DNA fragment deletion by the CRISPR/Cpf1-RecE/T system in Corynebacterium glutamicum.
    Zhao N; Li L; Luo G; Xie S; Lin Y; Han S; Huang Y; Zheng S
    J Ind Microbiol Biotechnol; 2020 Aug; 47(8):599-608. PubMed ID: 32876764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterologous Production of Squalene from Glucose in Engineered Corynebacterium glutamicum Using Multiplex CRISPR Interference and High-Throughput Fermentation.
    Park J; Yu BJ; Choi JI; Woo HM
    J Agric Food Chem; 2019 Jan; 67(1):308-319. PubMed ID: 30558416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced production of D-pantothenic acid in Corynebacterium glutamicum using an efficient CRISPR-Cpf1 genome editing method.
    Su R; Wang T; Bo T; Cai N; Yuan M; Wu C; Jiang H; Peng H; Chen N; Li Y
    Microb Cell Fact; 2023 Jan; 22(1):3. PubMed ID: 36609377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic Engineering of
    Zhang X; Chen S; Lin Y; Li W; Wang D; Ruan S; Yang Y; Liang S
    ACS Synth Biol; 2023 Oct; 12(10):2961-2972. PubMed ID: 37782893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined genome editing and transcriptional repression for metabolic pathway engineering in Corynebacterium glutamicum using a catalytically active Cas12a.
    Liu W; Tang D; Wang H; Lian J; Huang L; Xu Z
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):8911-8922. PubMed ID: 31583448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system.
    Peng F; Wang X; Sun Y; Dong G; Yang Y; Liu X; Bai Z
    Microb Cell Fact; 2017 Nov; 16(1):201. PubMed ID: 29137643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Fidelity Cytosine Base Editing in a GC-Rich Corynebacterium glutamicum with Reduced DNA Off-Target Editing Effects.
    Heo YB; Hwang GH; Kang SW; Bae S; Woo HM
    Microbiol Spectr; 2022 Dec; 10(6):e0376022. PubMed ID: 36374037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rewiring Metabolic Flux in
    Yin L; Xi D; Shen Y; Ding N; Shao Q; Qian Y; Fang Y
    J Agric Food Chem; 2024 Feb; 72(6):3077-3087. PubMed ID: 38303604
    [No Abstract]   [Full Text] [Related]  

  • 16. Case study of xylose conversion to glycolate in Corynebacterium glutamicum: Current limitation and future perspective of the CRISPR-Cas systems.
    Lee SS; Park J; Heo YB; Woo HM
    Enzyme Microb Technol; 2020 Jan; 132():109395. PubMed ID: 31731968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Base Genome Editing in
    Kim HJ; Oh SY; Lee SJ
    J Microbiol Biotechnol; 2020 Oct; 30(10):1583-1591. PubMed ID: 32807756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systems metabolic engineering of Corynebacterium glutamicum eliminates all by-products for selective and high-yield production of the platform chemical 5-aminovalerate.
    Rohles C; Pauli S; Gießelmann G; Kohlstedt M; Becker J; Wittmann C
    Metab Eng; 2022 Sep; 73():168-181. PubMed ID: 35917915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9-mediated ssDNA Recombineering in
    Liu J; Wang Y; Zheng P; Sun J
    Bio Protoc; 2018 Oct; 8(19):e3038. PubMed ID: 34532515
    [No Abstract]   [Full Text] [Related]  

  • 20. Efficient Multiplex Gene Repression by CRISPR-dCpf1 in
    Li M; Chen J; Wang Y; Liu J; Huang J; Chen N; Zheng P; Sun J
    Front Bioeng Biotechnol; 2020; 8():357. PubMed ID: 32391351
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.