These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 38675233)
21. A Novel Perturbed Spiral Sheathless Chip for Particle Separation Based on Traveling Surface Acoustic Waves (TSAW). Ji M; Liu Y; Duan J; Zang W; Wang Y; Qu Z; Zhang B Biosensors (Basel); 2022 May; 12(5):. PubMed ID: 35624627 [TBL] [Abstract][Full Text] [Related]
22. Micropallet arrays for the capture, isolation and culture of circulating tumor cells from whole blood of mice engrafted with primary human pancreatic adenocarcinoma. Gach PC; Attayek PJ; Whittlesey RL; Yeh JJ; Allbritton NL Biosens Bioelectron; 2014 Apr; 54():476-83. PubMed ID: 24316450 [TBL] [Abstract][Full Text] [Related]
23. Nanomaterial-based Microfluidic Chips for the Capture and Detection of Circulating Tumor Cells. Sun D; Chen Z; Wu M; Zhang Y Nanotheranostics; 2017; 1(4):389-402. PubMed ID: 29071201 [TBL] [Abstract][Full Text] [Related]
24. Highly-sensitive capture of circulating tumor cells using micro-ellipse filters. Chen H; Cao B; Sun B; Cao Y; Yang K; Lin YS Sci Rep; 2017 Apr; 7(1):610. PubMed ID: 28377598 [TBL] [Abstract][Full Text] [Related]
25. Integrated Multifunctional Electrochemistry Microchip for Highly Efficient Capture, Release, Lysis, and Analysis of Circulating Tumor Cells. Yan S; Chen P; Zeng X; Zhang X; Li Y; Xia Y; Wang J; Dai X; Feng X; Du W; Liu BF Anal Chem; 2017 Nov; 89(22):12039-12044. PubMed ID: 29072078 [TBL] [Abstract][Full Text] [Related]
26. Feasibility of a novel one-stop ISET device to capture CTCs and its clinical application. Chen F; Wang S; Fang Y; Zheng L; Zhi X; Cheng B; Chen Y; Zhang C; Shi D; Song H; Cai C; Zhou P; Xiong B Oncotarget; 2017 Jan; 8(2):3029-3041. PubMed ID: 27935872 [TBL] [Abstract][Full Text] [Related]
27. Multivalent DNA nanospheres for enhanced capture of cancer cells in microfluidic devices. Sheng W; Chen T; Tan W; Fan ZH ACS Nano; 2013 Aug; 7(8):7067-76. PubMed ID: 23837646 [TBL] [Abstract][Full Text] [Related]
28. Micropillar arrays as potential drug screens: Inhibition of micropillar-mediated activation of the FAK-Src-paxillin signaling pathway by the CK2 inhibitor CX-4945. Kim J; Choi WJ; Moon SH; Jung J; Park JK; Kim SH; Lee JO Acta Biomater; 2015 Nov; 27():13-20. PubMed ID: 26318800 [TBL] [Abstract][Full Text] [Related]
29. Deterministic Capture of Individual Circulating Tumor Cells Using a Flow-Restricted Microfluidic Trap Array. Yoon Y; Lee J; Yoo KC; Sul O; Lee SJ; Lee SB Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424040 [TBL] [Abstract][Full Text] [Related]
30. A micro-/nano-chip and quantum dots-based 3D cytosensor for quantitative analysis of circulating tumor cells. Wu X; Xiao T; Luo Z; He R; Cao Y; Guo Z; Zhang W; Chen Y J Nanobiotechnology; 2018 Sep; 16(1):65. PubMed ID: 30205821 [TBL] [Abstract][Full Text] [Related]
32. EGFR mutation detection of lung circulating tumor cells using a multifunctional microfluidic chip. Wang Y; Gao W; Wu M; Zhang X; Liu W; Zhou Y; Jia C; Cong H; Chen X; Zhao J Talanta; 2021 Apr; 225():122057. PubMed ID: 33592778 [TBL] [Abstract][Full Text] [Related]
33. Efficient separation of tumor cells from untreated whole blood using a novel multistage hydrodynamic focusing microfluidics. Gao R; Cheng L; Wang S; Bi X; Wang X; Wang R; Chen X; Zha Z; Wang F; Xu X; Zhao G; Yu L Talanta; 2020 Jan; 207():120261. PubMed ID: 31594567 [TBL] [Abstract][Full Text] [Related]
34. Accurate Isolation of Circulating Tumor Cells via a Heterovalent DNA Framework Recognition Element-Functionalized Microfluidic Chip. Liu Y; Lin Z; Zheng Z; Zhang Y; Shui L ACS Sens; 2022 Feb; 7(2):666-673. PubMed ID: 35113538 [TBL] [Abstract][Full Text] [Related]
35. Magneto-controllable capture and release of cancer cells by using a micropillar device decorated with graphite oxide-coated magnetic nanoparticles. Yu X; He R; Li S; Cai B; Zhao L; Liao L; Liu W; Zeng Q; Wang H; Guo SS; Zhao XZ Small; 2013 Nov; 9(22):3895-901. PubMed ID: 23650272 [TBL] [Abstract][Full Text] [Related]
36. Combination of microfluidic chips and biosensing for the enrichment of circulating tumor cells. Shi J; Zhao C; Shen M; Chen Z; Liu J; Zhang S; Zhang Z Biosens Bioelectron; 2022 Apr; 202():114025. PubMed ID: 35078145 [TBL] [Abstract][Full Text] [Related]
37. Design and Fabrication of a Microfluidic Chip for Particle Size-Exclusion and Enrichment. Yang L; Ye T; Zhao X; Hu T; Wei Y Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683269 [TBL] [Abstract][Full Text] [Related]
38. Continuous enrichment of circulating tumor cells using a microfluidic lateral flow filtration chip. Lee SW; Hyun KA; Kim SI; Kang JY; Jung HI J Chromatogr A; 2015 Jan; 1377():100-5. PubMed ID: 25542705 [TBL] [Abstract][Full Text] [Related]
39. Numerical Study on a Bio-Inspired Micropillar Array Electrode in a Microfluidic Device. Chen C; Ran B; Liu B; Liu X; Jin J; Zhu Y Biosensors (Basel); 2022 Oct; 12(10):. PubMed ID: 36291015 [TBL] [Abstract][Full Text] [Related]
40. Capturing and Clinical Applications of Circulating Tumor Cells with Wave Microfluidic Chip. Chen H Appl Biochem Biotechnol; 2020 Apr; 190(4):1470-1483. PubMed ID: 31782091 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]