These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38675267)

  • 1. A Microfluidic Chip for Single-Cell Capture Based on Stagnation Point Flow and Boundary Effects.
    Cheng L; Lv X; Zhou W; Li H; Yang Q; Chen X; Wu Y
    Micromachines (Basel); 2024 Mar; 15(4):. PubMed ID: 38675267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microparticle Manipulation Performed on a Swirl-Based Microfluidic Chip Featured by Dual-Stagnation Points.
    Dang Y; Hu S; Ou Z; Zhang Q
    Langmuir; 2023 Aug; 39(32):11245-11258. PubMed ID: 37535467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic Cell Trapping for Single-Cell Analysis.
    Deng B; Wang H; Tan Z; Quan Y
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31248148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfluidic array device for single cell capture and intracellular Ca2+ response analysis induced by dynamic biochemical stimulus.
    Wei W; Zhang M; Xu Z; Li W; Cheng L; Cao H; Ma M; Chen Z
    Biosci Rep; 2021 Jul; 41(7):. PubMed ID: 34269374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic-based hydrodynamic trap for single particles.
    Johnson-Chavarria EM; Tanyeri M; Schroeder CM
    J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling bead and cell mobility in a recirculating hanging-drop network.
    Rousset N; de Geus M; Chimisso V; Kaestli AJ; Hierlemann A; Lohasz C
    Lab Chip; 2023 Nov; 23(22):4834-4847. PubMed ID: 37853793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-Objective Design Automation for Microfluidic Capture Chips.
    Chen L; Grover WH; Sridharan M; Brisk P
    IEEE Trans Nanobioscience; 2023 Jul; 22(3):467-479. PubMed ID: 36197858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic-based hydrodynamic trap: design and implementation.
    Tanyeri M; Ranka M; Sittipolkul N; Schroeder CM
    Lab Chip; 2011 May; 11(10):1786-94. PubMed ID: 21479293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic generator of dynamic shear stress and biochemical signals based on autonomously oscillatory flow.
    Li YJ; Zhang WJ; Zhan CL; Chen KJ; Xue CD; Wang Y; Chen XM; Qin KR
    Electrophoresis; 2021 Nov; 42(21-22):2264-2272. PubMed ID: 34278592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Dual-Channel Microfluidic Chip for Single Tobacco Protoplast Isolation and Dynamic Capture.
    Zhang H; Geng Q; Sun Z; Zhong X; Yang Y; Zhang S; Li Y; Zhang Y; Sun L
    Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of a Microfluidic Chip Integrating Single Cell Trap and 3D Stable Rotation Manipulation.
    Huang L; Tu L; Zeng X; Mi L; Li X; Wang W
    Micromachines (Basel); 2016 Aug; 7(8):. PubMed ID: 30404313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles.
    Yang D; Ai Y
    Lab Chip; 2019 Nov; 19(21):3609-3617. PubMed ID: 31517354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic chip for highly efficient cell capturing and pairing.
    Cui S; Liu Y; Wang W; Sun Y; Fan Y
    Biomicrofluidics; 2011 Sep; 5(3):32003-320038. PubMed ID: 22662028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Modelling and Big Data Analysis of Flow and Drug Transport in Microfluidic Systems: A Spheroid-on-a-Chip Study.
    Kheiri S; Kumacheva E; Young EWK
    Front Bioeng Biotechnol; 2021; 9():781566. PubMed ID: 34888303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Microfluidic Chip with Double-Slit Arrays for Enhanced Capture of Single Cells.
    Xu J; Chen S; Wang D; Jiang Y; Hao M; Du G; Ba D; Lin Q; Mei Q; Ning Y; Su D; Liu K
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the capturing ability of swirl-based microfluidic chip by introducing baffle wall.
    Dang Y; Zhang Q; Ou Z; Hu S
    Biotechnol Appl Biochem; 2024 Apr; 71(2):336-355. PubMed ID: 38082547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplexing microelectrodes for dielectrophoretic manipulation and electrical impedance measurement of single particles and cells in a microfluidic device.
    Geng Y; Zhu Z; Wang Y; Wang Y; Ouyang S; Zheng K; Ye W; Fan Y; Wang Z; Pan D
    Electrophoresis; 2019 May; 40(10):1436-1445. PubMed ID: 30706494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A chip-based supersonic microfluidic nebulizer for efficient sample introduction into inductively coupled plasma - Mass spectrometry.
    Mavrakis E; Toprakcioglu Z; Lydakis-Simantiris N; Knowles TPJ; Pergantis SA
    Anal Chim Acta; 2022 Oct; 1229():340342. PubMed ID: 36156219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating microfluidics and lensless imaging for point-of-care testing.
    Moon S; Keles HO; Ozcan A; Khademhosseini A; Haeggstrom E; Kuritzkes D; Demirci U
    Biosens Bioelectron; 2009 Jul; 24(11):3208-14. PubMed ID: 19467854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-sorting centrifugal microfluidic chip with a flow rectifier.
    Ma J; Wu Y; Liu Y; Ji Y; Yang M; Zhu H
    Lab Chip; 2021 Jun; 21(11):2129-2141. PubMed ID: 33928337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.