These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38675267)

  • 21. Comparison of Chip Inlet Geometry in Microfluidic Devices for Cell Studies.
    Sun YS
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27314318
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Random and aligned electrospun PLGA nanofibers embedded in microfluidic chips for cancer cell isolation and integration with air foam technology for cell release.
    Yu CC; Chen YW; Yeh PY; Hsiao YS; Lin WT; Kuo CW; Chueh DY; You YW; Shyue JJ; Chang YC; Chen P
    J Nanobiotechnology; 2019 Feb; 17(1):31. PubMed ID: 30782169
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study on Microfluidic Chip Flow Rate Uniformity for Cell Activity Detection.
    Zhang Y; Huang L; Guo J; Ji J; Wei T; Fu L
    Langmuir; 2023 May; 39(18):6548-6555. PubMed ID: 37093638
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Resistance-Based Microfluidic Chip for Deterministic Single Cell Trapping Followed by Immunofluorescence Staining.
    Sun X; Li B; Li W; Ren X; Su N; Li R; Li J; Huang Q
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014194
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoporous micro-element arrays for particle interception in microfluidic cell separation.
    Chen GD; Fachin F; Colombini E; Wardle BL; Toner M
    Lab Chip; 2012 Sep; 12(17):3159-67. PubMed ID: 22763858
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of Flow Velocity on Laminar Flow in Microfluidic Chips.
    Wu C; Almuaalemi HYM; Sohan ASMMF; Yin B
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512588
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design and Fabrication of a Microfluidic Chip for Particle Size-Exclusion and Enrichment.
    Yang L; Ye T; Zhao X; Hu T; Wei Y
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683269
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic Immunoaffinity Basophil Activation Test for Point-of-Care Allergy Diagnosis.
    Aljadi Z; Kalm F; Ramachandraiah H; Nopp A; Lundahl J; Russom A
    J Appl Lab Med; 2019 Sep; 4(2):152-163. PubMed ID: 31639660
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic systems for particle capture and release: A review.
    Gong L; Cretella A; Lin Y
    Biosens Bioelectron; 2023 Sep; 236():115426. PubMed ID: 37276636
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancement of microfluidic particle separation using cross-flow filters with hydrodynamic focusing.
    Chiu YY; Huang CK; Lu YW
    Biomicrofluidics; 2016 Jan; 10(1):011906. PubMed ID: 26858812
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simple microfluidic stagnation point flow geometries.
    Dockx G; Verwijlen T; Sempels W; Nagel M; Moldenaers P; Hofkens J; Vermant J
    Biomicrofluidics; 2016 Jul; 10(4):043506. PubMed ID: 27462382
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increasing the Capture Rate of Circulating Tumor DNA in Unaltered Plasma Using Passive Microfluidic Mixer Flow Cells.
    Downs BM; Hoang TM; Cope L
    Langmuir; 2023 Mar; 39(9):3225-3234. PubMed ID: 36811956
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Geometrical effects in microfluidic-based microarrays for rapid, efficient single-cell capture of mammalian stem cells and plant cells.
    Lawrenz A; Nason F; Cooper-White JJ
    Biomicrofluidics; 2012 Jun; 6(2):24112-2411217. PubMed ID: 22655021
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A hydrodynamic-based dual-function microfluidic chip for high throughput discriminating tumor cells.
    Wei YJ; Wei X; Zhang X; Wu CX; Cai JY; Chen ML; Wang JH
    Talanta; 2024 Jun; 273():125884. PubMed ID: 38508128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection of sepsis in patient blood samples using CD64 expression in a microfluidic cell separation device.
    Zhang Y; Li W; Zhou Y; Johnson A; Venable A; Hassan A; Griswold J; Pappas D
    Analyst; 2017 Dec; 143(1):241-249. PubMed ID: 29144515
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single cell capture, isolation, and long-term in-situ imaging using quantitative self-interference spectroscopy.
    Fu R; Su Y; Wang R; Lin X; Jin X; Yang H; Du W; Shan X; Lv W; Huang G
    Cytometry A; 2021 Jun; 99(6):601-609. PubMed ID: 33704903
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoroughened adhesion-based capture of circulating tumor cells with heterogeneous expression and metastatic characteristics.
    Chen W; Allen SG; Reka AK; Qian W; Han S; Zhao J; Bao L; Keshamouni VG; Merajver SD; Fu J
    BMC Cancer; 2016 Aug; 16():614. PubMed ID: 27501846
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Composite Microfluidic Petri Dish-Chip (MPD-Chip) without Protein Coating for 2D Cell Culture.
    Yin S; Lu R; Liu C; Zhu S; Wan H; Lin Y; Wang Q; Qu X; Li J
    Langmuir; 2023 Nov; 39(44):15643-15652. PubMed ID: 37906157
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional fit-to-flow microfluidic assembly.
    Chen A; Pan T
    Biomicrofluidics; 2011 Dec; 5(4):46505-465059. PubMed ID: 22276088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.