BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 38675295)

  • 1. Worm-Based Diagnosis Combining Microfluidics toward Early Cancer Screening.
    Shi Y; Cui C; Chen S; Chen S; Wang Y; Xu Q; Yang L; Ye J; Hong Z; Hu H
    Micromachines (Basel); 2024 Mar; 15(4):. PubMed ID: 38675295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studying Parkinson's disease using Caenorhabditis elegans models in microfluidic devices.
    Youssef K; Tandon A; Rezai P
    Integr Biol (Camb); 2019 May; 11(5):186-207. PubMed ID: 31251339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
    Barata D; van Blitterswijk C; Habibovic P
    Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-throughput microplate toxicity screening platform based on Caenorhabditis elegans.
    Wu J; Gao Y; Xi J; You X; Zhang X; Zhang X; Cao Y; Liu P; Chen X; Luan Y
    Ecotoxicol Environ Saf; 2022 Oct; 245():114089. PubMed ID: 36126550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting and Trapping of a Single C. elegans Worm in a Microfluidic Chip for Automated Microplate Dispensing.
    Desta IT; Al-Sharif A; AlGharibeh N; Mustafa N; Orozaliev A; Giakoumidis N; Gunsalus KC; Song YA
    SLAS Technol; 2017 Aug; 22(4):431-436. PubMed ID: 27630097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidics in High-Throughput Drug Screening: Organ-on-a-Chip and
    Yoon S; Kilicarslan You D; Jeong U; Lee M; Kim E; Jeon TJ; Kim SM
    Biosensors (Basel); 2024 Jan; 14(1):. PubMed ID: 38275308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO2 and compressive immobilization of C. elegans on-chip.
    Chokshi TV; Ben-Yakar A; Chronis N
    Lab Chip; 2009 Jan; 9(1):151-7. PubMed ID: 19209348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic systems for high-throughput and high-content screening using the nematode Caenorhabditis elegans.
    Cornaglia M; Lehnert T; Gijs MAM
    Lab Chip; 2017 Nov; 17(22):3736-3759. PubMed ID: 28840220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative fluorescence imaging of mitochondria in body wall muscles of Caenorhabditis elegans under hyperglycemic conditions using a microfluidic chip.
    Sofela S; Sahloul S; Bhattacharjee S; Bose A; Usman U; Song YA
    Integr Biol (Camb); 2020 Jun; 12(6):150-160. PubMed ID: 32510148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale microfluidics providing high-resolution and high-throughput screening of Caenorhabditis elegans poly-glutamine aggregation model.
    Mondal S; Hegarty E; Martin C; Gökçe SK; Ghorashian N; Ben-Yakar A
    Nat Commun; 2016 Oct; 7():13023. PubMed ID: 27725672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel-Channel Electrotaxis and Neuron Screening of
    Youssef K; Archonta D; Kubiseski T; Tandon A; Rezai P
    Micromachines (Basel); 2020 Aug; 11(8):. PubMed ID: 32759767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic platform for the study of Caenorhabditis elegans.
    Shi W; Wen H; Lin B; Qin J
    Top Curr Chem; 2011; 304():323-38. PubMed ID: 21516386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Devices in Advanced Caenorhabditis elegans Research.
    Muthaiyan Shanmugam M; Subhra Santra T
    Molecules; 2016 Aug; 21(8):. PubMed ID: 27490525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic device for rapid screening of chemotaxis-defective Caenorhabditis elegans mutants.
    Yang J; Chen Z; Yang F; Wang S; Hou F
    Biomed Microdevices; 2013 Apr; 15(2):211-20. PubMed ID: 23076545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic Technologies for High Throughput Screening Through Sorting and On-Chip Culture of
    Midkiff D; San-Miguel A
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31775328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishment of a scalable microfluidic assay for characterization of population-based neutrophil chemotaxis.
    Grigolato F; Egholm C; Impellizzieri D; Arosio P; Boyman O
    Allergy; 2020 Jun; 75(6):1382-1393. PubMed ID: 31971608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fully automated microfluidic femtosecond laser axotomy platform for nerve regeneration studies in C. elegans.
    Gokce SK; Guo SX; Ghorashian N; Everett WN; Jarrell T; Kottek A; Bovik AC; Ben-Yakar A
    PLoS One; 2014; 9(12):e113917. PubMed ID: 25470130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Content Microfluidic Screening Platform Used To Identify σ2R/Tmem97 Binding Ligands that Reduce Age-Dependent Neurodegeneration in C. elegans SC_APP Model.
    Mondal S; Hegarty E; Sahn JJ; Scott LL; Gökçe SK; Martin C; Ghorashian N; Satarasinghe PN; Iyer S; Sae-Lee W; Hodges TR; Pierce JT; Martin SF; Ben-Yakar A
    ACS Chem Neurosci; 2018 May; 9(5):1014-1026. PubMed ID: 29426225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Research progress in the application of external field separation technology and microfluidic technology in the separation of micro/nanoscales].
    Cui J; Liu L; Li D; Piao X
    Se Pu; 2021 Nov; 39(11):1157-1170. PubMed ID: 34677011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidics as a tool for C. elegans research.
    San-Miguel A; Lu H
    WormBook; 2013 Sep; ():1-19. PubMed ID: 24065448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.