These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38675296)

  • 1. Optomechanical Microwave-to-Optical Photon Transducer Chips: Empowering the Quantum Internet Revolution.
    Xu X; Zhang Y; Tang J; Chen P; Zeng L; Xia Z; Xing W; Zhou Q; Wang Y; Song H; Guo G; Deng G
    Micromachines (Basel); 2024 Mar; 15(4):. PubMed ID: 38675296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superconducting-qubit readout via low-backaction electro-optic transduction.
    Delaney RD; Urmey MD; Mittal S; Brubaker BM; Kindem JM; Burns PS; Regal CA; Lehnert KW
    Nature; 2022 Jun; 606(7914):489-493. PubMed ID: 35705821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave-to-optical transduction using a mechanical supermode for coupling piezoelectric and optomechanical resonators.
    Wu M; Zeuthen E; Balram KC; Srinivasan K
    Phys Rev Appl; 2020 Jan; 13(1):. PubMed ID: 34796259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave-to-optics conversion using a mechanical oscillator in its quantum groundstate.
    Forsch M; Stockill R; Wallucks A; Marinković I; Gärtner C; Norte RA; van Otten F; Fiore A; Srinivasan K; Gröblacher S
    Nat Phys; 2020; 16(1):. PubMed ID: 34795789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators.
    Rochman J; Xie T; Bartholomew JG; Schwab KC; Faraon A
    Nat Commun; 2023 Mar; 14(1):1153. PubMed ID: 36859486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO
    Bartholomew JG; Rochman J; Xie T; Kindem JM; Ruskuc A; Craiciu I; Lei M; Faraon A
    Nat Commun; 2020 Jun; 11(1):3266. PubMed ID: 32601274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional optomechanical crystal cavity with high quantum cooperativity.
    Ren H; Matheny MH; MacCabe GS; Luo J; Pfeifer H; Mirhosseini M; Painter O
    Nat Commun; 2020 Jul; 11(1):3373. PubMed ID: 32632132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bidirectional microwave-optical transduction based on integration of high-overtone bulk acoustic resonators and photonic circuits.
    Blésin T; Kao W; Siddharth A; Wang RN; Attanasio A; Tian H; Bhave SA; Kippenberg TJ
    Nat Commun; 2024 Jul; 15(1):6096. PubMed ID: 39030168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissipative optomechanics in high-frequency nanomechanical resonators.
    Primo AG; Pinho PV; Benevides R; Gröblacher S; Wiederhecker GS; Alegre TPM
    Nat Commun; 2023 Sep; 14(1):5793. PubMed ID: 37723162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-Photon Cooling in Microwave Magnetomechanics.
    Zoepfl D; Juan ML; Schneider CMF; Kirchmair G
    Phys Rev Lett; 2020 Jul; 125(2):023601. PubMed ID: 32701311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements.
    Gavartin E; Verlot P; Kippenberg TJ
    Nat Nanotechnol; 2012 Aug; 7(8):509-14. PubMed ID: 22728341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wavelength transduction from a 3D microwave cavity to telecom using piezoelectric optomechanical crystals.
    Ramp H; Clark TJ; Hauer BD; Doolin CD; Balram KC; Srinivasan K; Davis JP
    Appl Phys Lett; 2020; 116(17):. PubMed ID: 34815582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entanglement Thresholds of Doubly Parametric Quantum Transducers.
    Rau CL; Kyle A; Kwiatkowski A; Shojaee E; Teufel JD; Lehnert KW; Dennis T
    Phys Rev Appl; 2022 Apr; 17(4):. PubMed ID: 36632278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superconducting qubit to optical photon transduction.
    Mirhosseini M; Sipahigil A; Kalaee M; Painter O
    Nature; 2020 Dec; 588(7839):599-603. PubMed ID: 33361793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generating single microwave photons in a circuit.
    Houck AA; Schuster DI; Gambetta JM; Schreier JA; Johnson BR; Chow JM; Frunzio L; Majer J; Devoret MH; Girvin SM; Schoelkopf RJ
    Nature; 2007 Sep; 449(7160):328-31. PubMed ID: 17882217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling microwave photons to a mechanical resonator using quantum interference.
    Rodrigues IC; Bothner D; Steele GA
    Nat Commun; 2019 Nov; 10(1):5359. PubMed ID: 31767836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase-controlled photon blockade in optomechanical systems.
    Gao YP; Cao C; Lu PF; Wang C
    Fundam Res; 2023 Jan; 3(1):30-36. PubMed ID: 38933569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gallium Phosphide as a Piezoelectric Platform for Quantum Optomechanics.
    Stockill R; Forsch M; Beaudoin G; Pantzas K; Sagnes I; Braive R; Gröblacher S
    Phys Rev Lett; 2019 Oct; 123(16):163602. PubMed ID: 31702356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of an ultra-low mode volume piezo-optomechanical quantum transducer.
    Chiappina P; Banker J; Meesala S; Lake D; Wood S; Painter O
    Opt Express; 2023 Jul; 31(14):22914-22927. PubMed ID: 37475390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency.
    Jiang W; Sarabalis CJ; Dahmani YD; Patel RN; Mayor FM; McKenna TP; Van Laer R; Safavi-Naeini AH
    Nat Commun; 2020 Mar; 11(1):1166. PubMed ID: 32127538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.