These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 38675299)

  • 1. A Survey of Emerging Memory in a Microcontroller Unit.
    Qi L; Fan J; Cai H; Fang Z
    Micromachines (Basel); 2024 Apr; 15(4):. PubMed ID: 38675299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Embedding security into ferroelectric FET array via in situ memory operation.
    Xu Y; Xiao Y; Zhao Z; Müller F; Vardar A; Gong X; George S; Kämpfe T; Narayanan V; Ni K
    Nat Commun; 2023 Dec; 14(1):8287. PubMed ID: 38092753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonvolatile Multistates Memories for High-Density Data Storage.
    Cao Q; Lü W; Wang XR; Guan X; Wang L; Yan S; Wu T; Wang X
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):42449-42471. PubMed ID: 32812741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research progress in architecture and application of RRAM with computing-in-memory.
    Wang C; Shi G; Qiao F; Lin R; Wu S; Hu Z
    Nanoscale Adv; 2023 Mar; 5(6):1559-1573. PubMed ID: 36926563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonvolatile Memories Based on Graphene and Related 2D Materials.
    Bertolazzi S; Bondavalli P; Roche S; San T; Choi SY; Colombo L; Bonaccorso F; Samorì P
    Adv Mater; 2019 Mar; 31(10):e1806663. PubMed ID: 30663121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overview of emerging nonvolatile memory technologies.
    Meena JS; Sze SM; Chand U; Tseng TY
    Nanoscale Res Lett; 2014; 9(1):526. PubMed ID: 25278820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-containing organic compounds for memory and data storage applications.
    Lian H; Cheng X; Hao H; Han J; Lau MT; Li Z; Zhou Z; Dong Q; Wong WY
    Chem Soc Rev; 2022 Mar; 51(6):1926-1982. PubMed ID: 35083990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SLIM: Simultaneous Logic-in-Memory Computing Exploiting Bilayer Analog OxRAM Devices.
    Kingra SK; Parmar V; Chang CC; Hudec B; Hou TH; Suri M
    Sci Rep; 2020 Feb; 10(1):2567. PubMed ID: 32054872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A compute-in-memory chip based on resistive random-access memory.
    Wan W; Kubendran R; Schaefer C; Eryilmaz SB; Zhang W; Wu D; Deiss S; Raina P; Qian H; Gao B; Joshi S; Wu H; Wong HP; Cauwenberghs G
    Nature; 2022 Aug; 608(7923):504-512. PubMed ID: 35978128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional materials prospects for non-volatile spintronic memories.
    Yang H; Valenzuela SO; Chshiev M; Couet S; Dieny B; Dlubak B; Fert A; Garello K; Jamet M; Jeong DE; Lee K; Lee T; Martin MB; Kar GS; Sénéor P; Shin HJ; Roche S
    Nature; 2022 Jun; 606(7915):663-673. PubMed ID: 35732761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-level, forming and filament free, bulk switching trilayer RRAM for neuromorphic computing at the edge.
    Park J; Kumar A; Zhou Y; Oh S; Kim JH; Shi Y; Jain S; Hota G; Qiu E; Nagle AL; Schuller IK; Schuman CD; Cauwenberghs G; Kuzum D
    Nat Commun; 2024 Apr; 15(1):3492. PubMed ID: 38664381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of a Fully Digital Computing-in-Memory for Non-Volatile Memory for Artificial Intelligence Edge Applications.
    Hu H; Feng C; Zhou H; Dong D; Pan X; Wang X; Zhang L; Cheng S; Pang W; Liu J
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin device-based image edge detection architecture for neuromorphic computing.
    Verma G; Soni S; Kaushik BK
    Nanotechnology; 2023 Nov; 35(5):. PubMed ID: 37797609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resistive random access memory: introduction to device mechanism, materials and application to neuromorphic computing.
    Zahoor F; Hussin FA; Isyaku UB; Gupta S; Khanday FA; Chattopadhyay A; Abbas H
    Discov Nano; 2023 Mar; 18(1):36. PubMed ID: 37382679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Training fully connected networks with resistive memories: impact of device failures.
    Romero LP; Ambrogio S; Giordano M; Cristiano G; Bodini M; Narayanan P; Tsai H; Shelby RM; Burr GW
    Faraday Discuss; 2019 Feb; 213(0):371-391. PubMed ID: 30357183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Powered Resistance-Switching Properties of Pr
    Huang Y; Wan L; Jiang J; Li L; Zhai J
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of Microwave Annealing on Resistive Random Access Memory Device with Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition Deposited IGZO Layer.
    Wu CH; Kuo SN; Chang KM; Chen YM; Zhang YX; Xu N; Liu WY; Chin A
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4244-4247. PubMed ID: 31968450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging memories: resistive switching mechanisms and current status.
    Jeong DS; Thomas R; Katiyar RS; Scott JF; Kohlstedt H; Petraru A; Hwang CS
    Rep Prog Phys; 2012 Jul; 75(7):076502. PubMed ID: 22790779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating Pathways to Minimize Sensor Power Usage for the Internet of Remote Things.
    Majcan TC; Ould S; Bennett NS
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physics-based modeling approaches of resistive switching devices for memory and in-memory computing applications.
    Ielmini D; Milo V
    J Comput Electron; 2017; 16(4):1121-1143. PubMed ID: 31997981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.