These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38675300)

  • 1. Investigation of Liquid Collagen Ink for Three-Dimensional Printing.
    Snider CL; Glover CJ; Grant DA; Grant SA
    Micromachines (Basel); 2024 Apr; 15(4):. PubMed ID: 38675300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering.
    Choi DJ; Choi K; Park SJ; Kim YJ; Chung S; Kim CH
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards resorbable 3D-printed scaffolds for craniofacial bone regeneration.
    Karanth D; Song K; Martin ML; Meyer DR; Dolce C; Huang Y; Holliday LS
    Orthod Craniofac Res; 2023 Dec; 26 Suppl 1():188-195. PubMed ID: 36866957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvent-based Extrusion 3D Printing for the Fabrication of Tissue Engineering Scaffolds.
    Zhang B; Cristescu R; Chrisey DB; Narayan RJ
    Int J Bioprint; 2020; 6(1):211. PubMed ID: 32596549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printed devices with integrated collagen scaffolds for cell culture studies including transepithelial/transendothelial electrical resistance (TEER) measurements.
    Cenhrang K; Robart L; Castiaux AD; Martin RS
    Anal Chim Acta; 2022 Aug; 1221():340166. PubMed ID: 35934386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
    Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the biocompatibility and stability of a gold nanoparticle collagen bioscaffold.
    Grant SA; Spradling CS; Grant DN; Fox DB; Jimenez L; Grant DA; Rone RJ
    J Biomed Mater Res A; 2014 Feb; 102(2):332-9. PubMed ID: 23670910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing non-synthetic crosslinkers in biomaterial inks based on polymers of marine origin to increase the shape fidelity in 3D extrusion printing.
    Carvalho DN; Dani S; Sotelo CG; Pérez-Martín RI; Reis RL; Silva TH; Gelinsky M
    Biomed Mater; 2023 Aug; 18(5):. PubMed ID: 37531962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a highly concentrated collagen ink for the creation of a 3D printed meniscus.
    Ronca A; D'Amora U; Capuana E; Zihlmann C; Stiefel N; Pattappa G; Schewior R; Docheva D; Angele P; Ambrosio L
    Heliyon; 2023 Dec; 9(12):e23107. PubMed ID: 38144315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization.
    Tran HN; Kim IG; Kim JH; Chung EJ; Noh I
    Biomater Res; 2022 Dec; 26(1):75. PubMed ID: 36494708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D printing of complex GelMA-based scaffolds with nanoclay.
    Gao Q; Niu X; Shao L; Zhou L; Lin Z; Sun A; Fu J; Chen Z; Hu J; Liu Y; He Y
    Biofabrication; 2019 Apr; 11(3):035006. PubMed ID: 30836349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of three different acidic solutions in tendon decellularized extracellular matrix bio-ink fabrication for 3D cell printing.
    Zhao F; Cheng J; Zhang J; Yu H; Dai W; Yan W; Sun M; Ding G; Li Q; Meng Q; Liu Q; Duan X; Hu X; Ao Y
    Acta Biomater; 2021 Sep; 131():262-275. PubMed ID: 34157451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and optimisation of hydroxyapatite-polyethylene glycol diacrylate hydrogel inks for 3D printing of bone tissue engineered scaffolds.
    Rajabi M; Cabral JD; Saunderson S; Gould M; Ali MA
    Biomed Mater; 2023 Sep; 18(6):. PubMed ID: 37699400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinspired Processing: Complex Coacervates as Versatile Inks for 3D Bioprinting.
    Khoonkari M; Es Sayed J; Oggioni M; Amirsadeghi A; Dijkstra P; Parisi D; Kruyt F; van Rijn P; Włodarczyk-Biegun MK; Kamperman M
    Adv Mater; 2023 Jul; 35(28):e2210769. PubMed ID: 36916861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds.
    Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK
    Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycerylphytate as an ionic crosslinker for 3D printing of multi-layered scaffolds with improved shape fidelity and biological features.
    Mora-Boza A; Włodarczyk-Biegun MK; Del Campo A; Vázquez-Lasa B; Román JS
    Biomater Sci; 2019 Dec; 8(1):506-516. PubMed ID: 31764919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun polycaprolactone/collagen nanofibers cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/
    Chen D; Zhu T; Fu W; Zhang H
    Int J Nanomedicine; 2019; 14():2127-2144. PubMed ID: 30988613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioglass incorporated methacrylated collagen bioactive ink for 3D printing of bone tissue.
    Kajave NS; Schmitt T; Nguyen TU; Gaharwar AK; Kishore V
    Biomed Mater; 2021 Feb; 16(3):. PubMed ID: 33142268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 4D-Printable Photocrosslinkable Polyurethane-Based Inks for Tissue Scaffold and Actuator Applications.
    Goodarzi Hosseinabadi H; Biswas A; Bhusal A; Yousefinejad A; Lall A; Zimmermann WH; Miri AK; Ionov L
    Small; 2024 Feb; 20(6):e2306387. PubMed ID: 37771189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of thick paste-like inks based on superconcentrated gelatin/alginate for 3D printing of scaffolds with shape fidelity and stability.
    Curti F; Drăgușin DM; Serafim A; Iovu H; Stancu IC
    Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111866. PubMed ID: 33641888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.