These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38675302)

  • 1. Machine Learning Classification of Self-Organized Surface Structures in Ultrashort-Pulse Laser Processing Based on Light Microscopic Images.
    Thomas R; Westphal E; Schnell G; Seitz H
    Micromachines (Basel); 2024 Apr; 15(4):. PubMed ID: 38675302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro/Nano Periodic Surface Structures and Performance of Stainless Steel Machined Using Femtosecond Lasers.
    Xu X; Cheng L; Zhao X; Wang J; Chen X
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the wettability of stainless steel from highly-hydrophilic to super-hydrophobic by femtosecond laser-induced ripples and nanospikes.
    Žemaitis A; Mimidis A; Papadopoulos A; Gečys P; Račiukaitis G; Stratakis E; Gedvilas M
    RSC Adv; 2020 Oct; 10(62):37956-37961. PubMed ID: 35515197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Femtosecond Laser Texturing of Surfaces for Tribological Applications.
    Bonse J; Kirner SV; Griepentrog M; Spaltmann D; Krüger J
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29762544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal effects of laser marking on microstructure and corrosion properties of stainless steel.
    Švantner M; Kučera M; Smazalová E; Houdková Š; Čerstvý R
    Appl Opt; 2016 Dec; 55(34):D35-D45. PubMed ID: 27958437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A facile preparation route for netlike microstructures on a stainless steel using an ethanol-mediated femtosecond laser irradiation.
    Bian H; Yang Q; Liu H; Chen F; Du G; Si J; Hou X
    Mater Sci Eng C Mater Biol Appl; 2013 Mar; 33(2):663-7. PubMed ID: 25427471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images.
    William W; Ware A; Basaza-Ejiri AH; Obungoloch J
    Comput Methods Programs Biomed; 2018 Oct; 164():15-22. PubMed ID: 30195423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of Surfaces with Persistent Antimicrobial Properties on Stainless Steel Developed Using Femtosecond Laser Texturing for Application in "High Traffic" Objects.
    Daskalova A; Angelova L
    Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface Feature Prediction for Laser Ablated 40Cr13 Stainless Steel Based on Extreme Learning Machine.
    Yin Z; Liu Q; Sun P; Zhou Y; Ning Z
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat Accumulation-Induced Surface Structures at High Degrees of Laser Pulse Overlap on Ti6Al4V Surfaces by Femtosecond Laser Texturing.
    Babadjanov F; Specht U; Lukasczyk T; Mayer B
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic surface structures in steel fabricated with femtosecond laser pulses: influence of laser rescanning on morphology and wettability.
    Florian Baron C; Mimidis A; Puerto D; Skoulas E; Stratakis E; Solis J; Siegel J
    Beilstein J Nanotechnol; 2018; 9():2802-2812. PubMed ID: 30498653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Laser Pulse Overlap and Scanning Line Overlap on Femtosecond Laser-Structured Ti6Al4V Surfaces.
    Schnell G; Duenow U; Seitz H
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32098103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex extreme learning machine applications in terahertz pulsed signals feature sets.
    Yin XX; Hadjiloucas S; Zhang Y
    Comput Methods Programs Biomed; 2014 Nov; 117(2):387-403. PubMed ID: 25037827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine-learning-based quality-level-estimation system for inspecting steel microstructures.
    Nishiura H; Miyamoto A; Ito A; Harada M; Suzuki S; Fujii K; Morifuji H; Takatsuka H
    Microscopy (Oxf); 2022 Aug; 71(4):214-221. PubMed ID: 35438158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel.
    Qi L; Nishii K; Namba Y
    Opt Lett; 2009 Jun; 34(12):1846-8. PubMed ID: 19529723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling the Wettability of Steel Surfaces Processed with Femtosecond Laser Pulses.
    Florian C; Skoulas E; Puerto D; Mimidis A; Stratakis E; Solis J; Siegel J
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36564-36571. PubMed ID: 30246525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing Heat Transfer from Metal Surfaces through Laser-Interference-Induced Microscopic Heat Sinks.
    Schell F; Chukwudi Okafor R; Steege T; Alamri S; Ghevariya S; Zwahr C; Lasagni AF
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pattern recognition with machine learning on optical microscopy images of typical metallurgical microstructures.
    Bulgarevich DS; Tsukamoto S; Kasuya T; Demura M; Watanabe M
    Sci Rep; 2018 Feb; 8(1):2078. PubMed ID: 29391483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creating superhydrophobic and antibacterial surfaces on gold by femtosecond laser pulses.
    Jalil SA; Akram M; Bhat JA; Hayes JJ; Singh SC; ElKabbash M; Guo C
    Appl Surf Sci; 2020 Mar; 506():144952. PubMed ID: 32184533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a Monitoring Strategy for Laser-Textured Metallic Surfaces Using a Diffractive Approach.
    Teutoburg-Weiss S; Voisiat B; Soldera M; Lasagni AF
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31861907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.